FIXED POINT FREE ACTIONS OF GROUPS OF EXPONENT 5

ENRICO JABARA

(Received 8 April 2002; revised 11 April 2003)

Communicated by R. B. Howlett

Abstract

In this paper we prove that if V is a vector space over a field of positive characteristic $p \neq 5$ then any regular subgroup A of exponent 5 of $GL(V)$ is cyclic. As a consequence a conjecture of Gupta and Mazurov is proved to be true.

1. Introduction

A group G is called periodic if any element of G has finite order and of finite exponent e if, for any $g \in G$, we have $g^e = 1$. Obviously any group of finite exponent is periodic, but the contrary is not true in general. We also recall that a group G is called locally finite if each finite subset of G is contained in a finite subgroup of G.

A well-known conjecture of Burnside says that a finitely generated group of finite exponent e is necessarily finite (or, equivalently, that any group of finite exponent is locally finite).

This conjecture has been proved only for $e = 2$ (in this case the group is abelian), for $e = 3$ (Levi and van der Waerden [4], see also [8, 14.2.2]), for $e = 4$ (Sanov [9], see also [8, 14.2.3]) and for $e = 6$ (Hall [3]), while nothing is known for the case $e = 5$. In some classes of groups Burnside’s conjecture is true; for example, Burnside proved that if F is a field of characteristic 0, then any subgroup of finite exponent of $GL(n, F)$ is finite. However Burnside’s conjecture is not true in general, as Novikov and Adjan proved in a series of papers of great length. Successively Adjan constructed infinite groups of exponent e with a finite numbers of generators for any odd exponent $e \geq 665$ (see [1]).
It is therefore quite natural to ask if, given a natural number e and a vector space V over a field F of characteristic finite and coprime with e, there exists an infinite subgroup A of $GL(V)$ of exponent e that is regular (that is, with the property that $\alpha(v) \neq v$ for any $v \neq 0$ and any $\alpha \in A$, $\alpha \neq 1$). If e is a prime number, it can be conjectured that A is necessarily cyclic. This conjecture is certainly true if the dimension of V over F is finite (this fact was proved by Burnside; see [8, 10.5.6]).

In this paper, we consider the case $e = 5$ and prove

Theorem 1.1. If V is a vector space over a field of positive characteristic $p \neq 5$ then any regular subgroup A of exponent 5 of $GL(V)$ is cyclic.

We observe that the action of A is regular over V if and only if any non-identity element of A has minimal polynomial that divide $x^4 + x^3 + x^2 + x + 1$. In group-theoretic terms, this means that in the semidirect product of V by A there are not elements of order $5p$.

2. Notation and preliminary results

We fix two distinct primes p and q. Let F be a field of characteristic p, V a vector space over F and A a subgroup of the automorphism group of V of exponent q and such that for any $\alpha \in A$, $\alpha \neq 1$ we have $\text{Fix}_V(\alpha) = \{0\}$. It is easy to verify that for any $\alpha \in A \setminus \{1\}$ and any $v \in V$ we have

1. $v + \alpha(v) + \alpha^2(v) + \cdots + \alpha^{q-1}(v) = 0.$

In the ring $\text{End}_F(V)$ identity (1) can be written as follows

2. $1 + \alpha + \alpha^2 + \cdots + \alpha^{q-1} = 0$

for any $\alpha \in A \setminus \{1\}$.

Remark. For any pair of elements $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ we have $[\alpha, \beta] \neq 1$.

If $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ commute, then $\alpha\beta^i$ ($i = 0, 1, \ldots, q - 1$) are all non identity elements of A. If we write the fundamental relation (2) for these elements, we get $1 + \alpha\beta^i + \cdots + (\alpha\beta^i)^{q-1} = 0$ for $i = 0, 1, \ldots, q - 1$. Summing term by term and using the fact $[\alpha, \beta] = 1$ we get

$q + \alpha(1 + \beta + \cdots + \beta^{q-1}) + \cdots + \alpha^{q-1}(1 + \beta + \cdots + \beta^{q-1}) = 0$

but, by (2), $1 + \beta + \cdots + \beta^{q-1} = 0$, and therefore $q = 0$ while $p \neq q$. This contradiction proves the statement.
The preceding remark shows that any finite subgroup of A must have order q. We observe that infinite groups in which any proper (non trivial) subgroup has order q have been constructed by Ol’šanskiĭ ([7]). Groups of this type are called Tarski monsters.

Before proving Theorem 1.1, we want to expose the ideas behind the proof. We suppose for a moment that $q = 3$ (and not knowing the theorem of Levi and van der Warden [4]); then we can write (2) as

$$1 + \alpha + \alpha^{-1} = 0 \quad \text{for all } \alpha \in A \setminus \{1\}.$$

If A is not cyclic, there exist $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ and from (3) we get

$$\begin{cases}
1 + \alpha + \alpha^{-1} = 0, \\
1 + \alpha\beta + \beta^{-1}\alpha^{-1} = 0, \\
1 + \alpha\beta^{-1} + \beta\alpha^{-1} = 0,
\end{cases}$$

summing each member we obtain

$$3 + \alpha (1 + \beta + \beta^{-1}) + (1 + \beta + \beta^{-1})\alpha^{-1} = 0$$

but, from (3), $1 + \beta + \beta^{-1} = 0$. From this we get the contradiction $3 = 0$ while $p \neq 3$.

3. Proof of Theorem 1.1 ($p = 2$)

We suppose $q = 5$; to prove Theorem 1.1 we suppose that there exists a counterexample, that is, a vector space V over a field F of characteristic $p \neq 5$ and a non cyclic group A of exponent 5 acting regularly on V.

We fix the following notation: the indices in the sums will always be from 0 to 4 and considered mod 5. We shall often use the fundamental relation (2) in the form

$$1 + \alpha + \alpha^2 + \alpha^3 + \alpha^{-1} = 0$$

or in the form

$$1 + \alpha + \alpha^2 + \alpha^{-2} + \alpha^{-1} = 0.$$

We shall always denote by α and β two non identity elements of A with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$.

The proof is in various steps.

Step 1. We have $\sum_{i,j} \beta^{i+j} / \alpha \beta^{i+2j} / \alpha \beta^{i+j} = 0$.

PROOF. If we put \(i + j = r \) we obtain
\[
\sum_{i,j} \beta^{i+j} \alpha \beta^{i+2} \alpha \beta^{i+j} = \sum_r \left(\beta^r \alpha \beta^r \left(\sum_j \beta^j \right) \alpha \beta^j \right)
\]
and we conclude because \(\sum_j \beta^j = 0 \).

We put \(\sigma = \sum_i \beta^i \alpha \beta^i \) and \(\overline{\sigma} = \sum_i \beta^i \alpha^{-1} \beta^i \).

STEP 2. \(\sigma + \overline{\sigma} = 0 \).

PROOF. If \(i = 0, 1, \ldots, 4 \), by (4) we get
\[
1 + \alpha \beta^i + \alpha \beta^i \alpha \beta^i + \alpha \beta^i \alpha \beta^i \alpha \beta^i + \beta^{-i} \alpha^{-1} = 0
\]
summing the five preceding equalities and recalling that
\[
\alpha \left(\sum_i \beta^i \right) = 0 \quad \text{and} \quad \left(\sum_i \beta^{-i} \right) \alpha^{-1} = 0
\]
we get
\[
(6) \quad \alpha \left(\sum_i \beta^i \alpha \beta^i \right) + \alpha \left(\sum_i \beta^i \alpha \beta^i \alpha \beta^i \right) = -5
\]
and
\[
(7) \quad \sum_i \beta^i \alpha \beta^i + \sum_i \beta^i \alpha \beta^i \alpha \beta^i = -5 \alpha^{-1}.
\]
The sum \(\sigma = \sum_i \beta^i \alpha \beta^i \) is invariant with respect to the substitutions \(\alpha \sim \beta^i \alpha \beta^i \) with \(j = 0, 1, \ldots, 4 \). If we make these substitutions in (7) and we take a sum, we get
\[
5 \sum_i \beta^i \alpha \beta^i + \sum_{i,j} \beta^{i+j} \alpha \beta^{i+j} = -5 \sum_i \beta^{-i} \alpha^{-1} \beta^{-i}
\]
By Step 1 we have \(\sum_{i,j} \beta^{i+j} \alpha \beta^{i+j} = 0 \) and since \(\text{char } F = p \neq 5 \) we obtain the relation we wanted.

STEP 3. \(\sigma \overline{\sigma} + \sigma \alpha^{-1} = -5 \).

PROOF. We observe that, since \(A \) has exponent 5, the relation (6) can be written as
\[
\alpha \left(\sum_i \beta^i \alpha \beta^i \right) + \left(\sum_i \beta^{-i} \alpha^{-1} \beta^{-i} \right) \alpha^{-1} = -5
\]

STEP 4. \(\sigma^2 + \overline{\sigma}^2 = -25 \).
PROOF. We have observed before that \(\sigma \) and \(\alpha \) are invariant with respect to the substitutions \(\alpha \sim \beta \alpha \beta \) with \(j = 0, 1, \ldots, 4 \). So we make these substitutions in \(\alpha \sigma + \sigma^{-1} = -5 \), we sum the five equalities and we get the desired result. \(\square \)

STEP 5. Theorem 1.1 is true if \(p = 2 \).

PROOF. Let \(p = 2 \). By Step 2 we have \(\sigma \sigma = \sigma \) and, recalling Step 4 we obtain the following contradiction \(0 = \sigma^2 = \sigma^3 + \sigma^2 = -25 \). \(\square \)

4. Proof of Theorem 1.1 (\(p = 3 \))

From now on, we suppose that \(p = 3 \) and therefore the relations obtained in Steps 2–4 have the form:

\[
\begin{aligned}
\sigma + \sigma^{-1} &= 0, \\
\alpha \sigma + \sigma^{-1} &= 1, \\
\sigma^2 + \sigma^2 &= 2.
\end{aligned}
\]

In particular, \(\sigma^2 = \sigma^2 = 1 \).

STEP 6. We have

(a) \(\alpha \sigma = 1 + \sigma \alpha^{-1} \);
(b) \(\alpha^{-1} \sigma = \sigma \alpha - 1 \).

PROOF. From \(\sigma \sigma = -\sigma \) and from \(\alpha \sigma + \sigma^{-1} = 1 \) we get (a).

Multiplying \(\alpha \sigma + \sigma^{-1} = 1 \) on the left by \(\alpha^{-1} \) and on the right by \(\alpha \) we obtain \(\alpha^{-1} \sigma + \sigma \alpha = 1 \) that gives (b). \(\square \)

STEP 7. If we put \(\rho = \alpha + \alpha^{-1} \) and \(\varphi = \alpha \sigma \) we get

(a) \(\rho \in GL(V) \) has order 8 and \(\rho^2 = 1 - \rho \);
(b) \(\varphi \in GL(V) \) has order 8 and \(\varphi^2 = 1 + \varphi \);
(c) \([\rho, \varphi] = 1 \).

PROOF. From the relations obtained in Step 6, we get

\[
\rho \sigma = (\alpha + \alpha^{-1}) \sigma = 1 + \sigma \alpha^{-1} + \sigma \alpha - 1 = \sigma(\alpha + \alpha^{-1}) = \sigma \rho
\]

and therefore \([\rho, \sigma] = 1 \); since \([\rho, \alpha] = 1 \) we also have \([\rho, \varphi] = 1 \). Then

\[
\rho^2 = (\alpha + \alpha^{-1})^2 = \alpha^2 + \alpha^{-2} + 2 = -1 - \alpha - \alpha^{-1} + 2 = 1 - \rho \quad \text{and}
\rho^3 = (1 - \rho)^3 = 1 - 2\rho + \rho^2 = 1 - 2\rho + 1 - \rho = -1.
\]
In particular, \(\rho \in GL(V) \) and \(\rho^8 = 1 \). Moreover,
\[
\varphi^2 = \alpha \sigma \alpha \sigma = \alpha (1 + \alpha^{-1} \varphi) \sigma = 1 + \alpha \sigma = 1 + \varphi \quad \text{and}
\varphi^4 = (1 + \varphi)^2 = 1 + 2\varphi + \varphi^2 = 1 + 2\varphi + 1 + \varphi = -1.
\]
In particular, \(\varphi \in GL(V) \) and \(\varphi^8 = 1 \).

STEP 8. The group \(B = \langle \rho^2, \varphi^2 \rangle \leq GL(V) \) is abelian and \(|B| \leq 4 \).

Proof. By Step 7, \(B \) is certainly abelian, moreover \(\rho^2 \) and \(\varphi^2 \) have order 4 and therefore, since \(\rho^4 = 1 = \varphi^4 \), \(|B| \leq 8 \). We prove that \(B \) has order (at most) 4 showing that \(\rho^2 \varphi^2 \), which has order 2, acts fixed points freely over \(V \) and it is therefore equal to \(-1\).

If we put \(V_0 = \text{Fix}_V(\rho^2 \varphi^{-2}) \) we have that \(V_0 \) is a \(\langle \rho, \varphi \rangle \)-invariant subspace of \(V \) (because \(\rho, \varphi \) is abelian).

If, by contradiction, \(V_0 \neq \{0\} \) and using the same symbols for the restrictions of the automorphisms to \(V_0 \), from Step 7 we get \(1 - \rho = \rho^2 = \varphi^2 = 1 + \varphi \), that is, \(\alpha \sigma = \varphi = -\rho = -\alpha - \alpha^{-1} \). Using Step 6 (a) we get \(1 + \sigma \alpha \alpha^{-1} = -\alpha - \alpha^{-1} \) and \(\sigma = -1 - \alpha - \alpha^2 \) and \(1 = \sigma^3 = 1 + \alpha + \alpha^2 + \alpha^3 + 2\alpha^2 + 2\alpha^3 + 2\alpha^4 = 1 + 2\alpha + 2\alpha^3 + \alpha^4 \).

That is, \(\alpha^4 = \alpha + \alpha^3 \) and \(\alpha^2 = \alpha + \alpha^{-1} = \rho \) which gives the required contradiction:
\[
1 = \rho^8 = (\alpha^2)^4 = \alpha.
\]

STEP 9. Theorem 1.1 is true if \(p = 3 \).

Proof. By Step 8 we have \(|B| \leq 4 \) and since \(\rho^4 = 1 = \varphi^4 \), this is possible only in two ways:

(I) \(\rho^2 = \varphi^2 \) but this gives a contradiction, because in the proof of Step 8 we have seen that \(\rho^2 \varphi^{-2} \) acts fixed points freely on \(V \).

(II) \(\rho^2 = -\varphi^2 \) then, by Step 7, \(1 - \rho = 1 - \varphi \) and \(\varphi = 1 + \rho \). Then, recalling Step 6, \(1 + \sigma \alpha \alpha^{-1} = \sigma \alpha \sigma = \varphi = 1 + \rho \) and \(\sigma = \rho \alpha = 1 + \alpha^2 \); this implies \(1 = \sigma^3 = (1 + \alpha^2)^2 = 1 + 2\alpha^2 + \alpha^4 \) and \(\alpha^2 = 1 \): a contradiction.

5. Sketch of the proof of Theorem 1.1 for \(p \geq 7 \)

We remark that if \(\text{char } F = p \geq 7 \), we can obtain the same result in a way similar to the one used for \(p = 3 \), but using arguments ad hoc for any prime number \(p \).

We can always find commuting elements \(\rho \) and \(\varphi \) (as defined in Step 7), satisfying \(\rho^2 + \rho - 1 = 0 \) and \(\varphi^2 + 5\varphi + 2^{-1} \cdot 25 = 0 \). The orders of these automorphisms are divisors of \(p^2 - 1 \) and depends on the prime \(p \), as Table 1 shows, but we haven’t been able to find a method of proof valid for any \(p \).

It seems hard to prove the same conjecture for \(A \) in the case in which \(q = 7 \) (or greater), with the methods used in this paper.
Table 1.

<table>
<thead>
<tr>
<th>p</th>
<th>3</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>8</td>
<td>16</td>
<td>10</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>24</td>
<td>40</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

6. An application

If G is a periodic group, we denote by $\omega(G)$ the set of the orders of the elements of G. In [2] Gupta and Mazurov proved that if $\omega(G)$ is a proper subset of $\{1, 2, 3, 4, 5\}$, then either G is locally finite or there exists a normal nilpotent $5'$-subgroup N of G such that G/N is a group of exponent 5. The same authors have conjectured that if $N \neq \{1\}$ then G is locally finite. This conjecture is equivalent to

Conjecture ([2]). *Let A be an automorphism group of an elementary abelian \{2, 3\}-group G such that every non-trivial element of A fixes in G only the trivial element. If A is of exponent 5 then A is cyclic.*

The conjecture is true by Theorem 1.1; hence we have proved:

Theorem 6.1. *If $\omega(G) \subseteq \{1, 2, 3, 4, 5\}$ and $\omega(G) \neq \{1, 5\}$ then the group G is locally finite.*

To establish Theorem 6.1, we need (in addition to the results of [2]) the following facts:

- The groups of exponent 4 are locally finite ([9]).
- If $\omega(G) = \{1, 2, 3, 4, 5\}$ then G is locally finite ([5]).
- If $\omega(G) = \{1, 2, 3, 5\}$ then $G \simeq A_5$ ([10]).

We recall that if $\omega(G) = \{1, 2\}$ then G is elementary abelian, if $\omega(G) = \{1, 3\}$ then G is nilpotent of class at most 3 ([4]), and that the groups G with $\omega(G) = \{1, 2, 3\}$ are described in [6].

References

Dipartimento di Informatica
Università di Ca’ Foscari
Via Torino 155–30174 Venezia
Italy
e-mail: jabara@dsi.unive.it