pp. 299–315: D. Caponetti, A. Trombetta and G. Trombetta
Proper 1-ball contractive retractions in Banach spaces of measurable functions.
Membership and correspondence.
Applications for membership, notices of change of address or title or position, members’ subscriptions and correspondence related to accounts should be sent to the Treasurer. Correspondence about the distribution of the Society’s BULLETIN, GAZETTE, and JOURNALS, and orders for back numbers should be sent to the Treasurer. All other correspondence should be sent to the Secretary.

The Bulletin.
The Bulletin of the Australian Mathematical Society began publication in 1969. Normally two volumes of three numbers are published annually. The BULLETIN is published for the Australian Mathematical Society by the Australian Mathematical Publishing Association Inc.

Editor: Alan S. Jones
Deputy Editor: Graeme A. Chandler

ASSOCIATE EDITORS

Robert S. Anderssen B.D. Craven B.D. Jones M. Murray
R. Bartnik Brian A. Davey Owen D. Jones J.H. Rubinstein
Elizabeth J. Billington J.R. Giles G.I. Lehrer Jamie Simpson
G. Cairns J.A. Hempel K.L. McAvaney Brailey Sims
J. Clark B.D. Hughes A.G.R. McIntosh Ross Street
G.L. Cohen G. Ivanov Terry Mills R.P. Sullivan
N.S. Trudinger A.J. van der Poorten

©Copyright Statement Where necessary, permission to photocopy for internal or personal use or the internal or personal use of specific clients is granted by the Treasurer, Australian Mathematical Publishing Association, Inc., for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $A2.00 per copy of article is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should be addressed to the Treasurer, Australian Mathematical Publishing Association, Inc., School of Mathematical Sciences, ANU, Canberra ACT 0200 Australia. Serial–fee code: 0004-9727/05 $A2.00 + 0.00.
The Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. The Editors receive more than three times as much material as can be published in the BULLETIN; many meritorious papers can, therefore, not be accepted. Authors are asked to avoid, as far as possible the use of mathematical symbols in the title. Manuscripts are accepted for review with the understanding that the same work is not concurrently submitted elsewhere.

To ensure speedy publication, editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. Papers are accepted only after a careful evaluation by the Editor and an Associate Editor or other expert in the field. As even minor revisions are generally not permitted, authors should read carefully all the details listed below. For a paper to be acceptable for publication, not only should it contain new and interesting results but also

(i) the exposition should be clear and attractive;
(ii) the manuscript should be in publishable form, without revision.

Authors should submit three clean, high quality copies to
The Editorial Office, Bulletin of the Australian Mathematical Society,
Department of Mathematics, The University of Queensland,
Queensland 4072, Australia.

Unless requested at the time, material submitted to the BULLETIN will usually not be returned.

EDITORIAL POLICY

1. References. Arrange references alphabetically (by surname of the first author) and cite them numerically in the text. Ensure the accuracy of the references: authors’ names should appear as in the work quoted. Include in the list of references only those works cited, and avoid citing works which are “in preparation” or “submitted”. Where the work cited is not readily accessible (for example, a preprint) a photocopy of the title page and relevant sections of the copy that you have used should be included with your submission.

2. Abstracts.
 1. Each paper must include an abstract of not more than 200 words, which should contain a brief but informative summary of the contents of the paper, but no inessential details.
 2. The abstract should be self-contained, but may refer to the title.
 3. Specific references (by number) to a section, proposition, equation or bibliographical item should be avoided.

3. Subject Classification. Authors should include in their papers one or more classification numbers, following the 2000 Mathematics Subject Classification. Details of this scheme can be found in each Annual Index of Mathematical Reviews or on the web at http://www.ams.org/msc.

4. Abstracts of Ph.D. Theses. The Bulletin endeavours to publish abstracts of all accepted Australasian Ph.D. theses in mathematics. One restriction, however, is that the abstract must be received by the Editor within 6 months of the degree being approved.

5. Electronic Manuscripts. The Bulletin is produced using \texttt{AMS-T\LaTeX}. Authors who are able to do so are invited to prepare their manuscripts using \texttt{T\LaTeX}. (We accept Plain \texttt{T\LaTeX}, \texttt{AMS-T\LaTeX} or \texttt{\LaTeX}.) Hard copy only should be submitted for assessment, but if the paper is accepted the author will be asked to send the text on an IBM PC compatible diskette or via e-mail to ams@maths.uq.edu.au. [Typed manuscripts are, of course, still acceptable.]
Height estimates on cubic twists of the Fermat elliptic curve
Tomasz Jedrzejak 177

Ascending HNN-extensions and properly 3-realisable groups
Francisco F. Lasheras 187

On C*-algebras with the approximate \(n \)-th root property
A. Chigogidze, A. Karasev, K. Kawamura and V. Valov 197

Flat Laguerre planes of Kleinewillinghöfer type \(E \) obtained by cut and paste
Günter F. Steinke .. 213

Abstract theory of semiorders
Thomas C. Craven and Tara L. Smith 225

Finding the group structure of elliptic curves over finite fields
John B. Friedlander, Carl Pomerance and Igor E. Shparlinski 251

On second-order converse duality for a nondifferentiable programming problem
Xin Min Yang and Ping Zhang 265

Existence of positive solutions for nonlocal and nonvariational elliptic systems
Yujuan Chen and Hongjun Gao 271

Characterisation of the isometric composition operators on the Bloch space
Flavia Colonna ... 283

Bounded vector measures on effect algebras
Hong Taeck Hwang, Longlu Li and Hunnam Kim 291

Proper 1-ball contractive retractions in Banach spaces of measurable functions
D. Caponetti, A. Trombetta and G. Trombetta 299

Complementation of the Jacobson group in a matrix ring
David Dolžan ... 317

Riemann–Siegel sums via stationary phase
E.O. Tuck 325

ABSTRACTS OF AUSTRALASIAN Ph.D. THESES

On singular Artin monoids
Noelle Antony .. 329

Poincaré duality pairs of dimension three
Beatrice Bleile .. 331

Geometric Seifert 4-manifolds with hyperbolic bases
Michael Kemp .. 335
PROPER 1-BALL CONTRACTIVE RETRACTIONS IN BANACH SPACES OF MEASURABLE FUNCTIONS

D. Caponetti, A. Trombetta and G. Trombetta

In this paper we consider the Wośko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all $k \geq 1$ for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct.

1. Introduction

Let X be an infinite-dimensional Banach space with unit closed ball $B(X)$ and unit sphere $S(X)$. It is well known that, in this setting, there is a retraction of $B(X)$ onto $S(X)$, that is, a continuous mapping $R : B(X) \to S(X)$ with $Rx = x$ for all $x \in S(X)$. In [4] Benyamini and Sternfeld, following Nowak ([13]), proved that such a retraction can be chosen among Lipschitz mappings. The problem of evaluating the infimum $k_0(X)$ of the Lipschitz constants of such retractions is of considerable interest in the literature. A general result states that in any Banach space X, $3 \leq k_0(X) \leq k_0$ (see [8, 10]), where k_0 is a universal constant. In special spaces more precise estimates have been obtained by means of constructions which depend on each space. We refer the reader to [9, 10] for a collection of results on this problem and related ones.

A similar problem can be considered by replacing Lipschitz retractions by k-ball contractive retractions. Let us recall that for a bounded $A \subset X$, the Hausdorff measure (briefly H-measure) of noncompactness $\gamma(A)$ is the infimum of all $\varepsilon > 0$ such that A has a finite ε-net in X. The following properties of γ hold, for bounded $A, B \subset X$:

\[
\begin{align*}
\gamma(A) &= 0 \text{ if and only if } A \text{ is precompact;} \\
\gamma(\overline{\sigma A}) &= \gamma(A) \text{ where } \overline{\sigma A} \text{ denotes the closed convex hull of } A; \\
\gamma(A \cup B) &= \max\{\gamma(A), \gamma(B)\}; \\
\gamma(A + B) &\leq \gamma(A) + \gamma(B); \\
\gamma(\lambda A) &= |\lambda| \gamma(A), \text{ for all } \lambda \in \mathbb{R}.
\end{align*}
\]

Received 5th May, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/05 $2.00+0.00.
A continuous mapping $T : \text{dom}(T) \subset X \to X$ is called \textit{k-ball contractive} if there is $k \geq 0$ such that $\gamma(TA) \leq k \gamma(A)$ for each bounded $A \subset \text{dom}(T)$.

In [20] Wośko has proved that in the space $X = C([0,1])$ for any $\varepsilon > 0$ there exists a $(1 + \varepsilon)$-ball contractive retraction of $B(X)$ onto $S(X)$. Moreover he has posed the question of estimating the characteristic:

$$W(X) = \inf \{ k \geq 1 : \text{there is a } k\text{-ball contractive retraction } R : B(X) \to S(X) \}$$

for special classical Banach spaces, and also the question whether or not there is a Banach space in which $W(X)$ is a minimum. As Wośko has pointed out a 1-ball contractive retraction cannot be a Lipschitz mapping. In [19] it was shown that $W(X) \leq 6$ for any Banach space, reaching the value 4 and 3 depending on the geometry of the space X. Results in other Banach spaces can be found in [6, 12, 16, 17]. Recently, in [1, Theorem 4] it has been proved that if the Banach space X has a monotone norm, then for any $\varepsilon > 0$ there exists a $(1 + \varepsilon)$-ball contractive retraction of $B(X)$ onto $S(X)$. For a continuous mapping $T : \text{dom}(T) \subset X \to X$ we also consider the following quantitative characteristic which is of interest in nonlinear analysis:

$$\omega(T) = \sup \{ k \geq 0 : \gamma(TA) \geq k \gamma(A) \text{ for every bounded } A \subset \text{dom}(T) \}$$

called the \textit{lower H-measure of noncompactness} of T. This characteristic is closed related to properness. In fact, from $\omega(T) > 0$ it follows that T is a \textit{proper} mapping, that is, $T^{-1}K$ is compact for each compact subset K of X.

Aim of this paper is to estimate $W(X)$ in some classical Banach spaces of real valued measurable functions on $[0,1]$ and also to give estimates of the lower H-measure of noncompactness of the retractions we construct. In Section 3 we consider special Banach spaces in which, by means of a suitable compact mapping $P_X : B(X) \to X$, we give an explicit formula of a k-ball contractive retraction with positive lower H-measure of noncompactness. In the sections which follow we give examples of Banach spaces X in which $W(X) = 1$. In Orlicz (Section 4) and Lorentz spaces (Section 5) we obtain that the value $W(X) = 1$ is actually a minimum. Moreover in Lebesgue and Lorentz spaces we show that a 1-ball contractive retraction R can be chosen in such a way that $\omega(R) = 1$. As a consequence in the Lebesgue and Lorentz spaces we have the existence of 1-ball contractive fixed point free mappings $F : B(X) \to B(X)$ with $\omega(F) = 1$.

2. Preliminaries.

Let Σ be the σ-algebra of all Lebesgue measurable subsets of $[0,1]$ equipped with the Lebesgue measure μ, and write \textit{almost everywhere} for μ-almost everywhere. Let $\mathcal{M}_0 := \mathcal{M}_0([0,1],\Sigma,\mu)$ denote the space of all classes of Lebesgue measurable functions $f : [0,1] \to \mathbb{R}$ and \mathcal{M}_0^+ its positive cone. We recall the definition of Banach function space, we refer to the book of Bennett–Sharpley [3] for the main results of this theory.
Definition 2.1. A mapping $\rho : \mathcal{M}_0^+ \rightarrow [0, \infty]$ is called a Banach function norm if, for all $f, g, f_n (n = 1, 2, \ldots)$ in \mathcal{M}_0^+, for all constants $\lambda \geq 0$ and for all $E \in \Sigma$, the following properties hold:

$\rho(f) = 0$ if and only if $f = 0$ almost everywhere in $[0, 1]$;
$\rho(\lambda f) = \lambda \rho(f)$;
$\rho(f + g) \leq \rho(f) + \rho(g)$;
$g \leq f$ almost everywhere $\Rightarrow \rho(g) \leq \rho(f)$;
$f_n \uparrow f$ almost everywhere $\Rightarrow \rho(f_n) \uparrow \rho(f)$;
$\rho(\chi_{[0,1]}) < \infty$;
$\int_E f(t) \, dt \leq C_E \rho(f)$, for some constant $0 < C_E < \infty$ independent of f.

Definition 2.2. If ρ is a Banach function norm, the Banach space

$Y = \left\{ f \in \mathcal{M}_0 : \rho(|f|) < \infty \right\}$

is a Banach function space, endowed with the norm $\|f\| = \rho(|f|)$.

Throughout this section Y is a Banach function space.

Definition 2.3. A function $f \in Y$ is said to have absolutely continuous norm if for every $\varepsilon > 0$ there is $\delta > 0$ such that $\|f \chi_D\| < \varepsilon$ for every $D \in \Sigma$ with $\mu(D) < \delta$.

Note that, as the underlying space $[0, 1]$ has finite measure, by virtue of [18, Lemma 3.3.2], the above definition is equivalent to [3, Definition 3.1]. We set

$Y^0 = \{f \in Y : f$ has absolutely continuous norm$\}$.

If $Y^0 = Y$, then the space Y is said to have absolutely continuous norm. We denote by W the set of all simple functions of \mathcal{M}_0. We recall that W is a subset of Y and we denote by $\overline{W}_{\|\cdot\|}$ the closure of W in Y.

The next lemma collects some results we need (see [3, Theorems 3.8, 3.11 and 3.13]).

Lemma 2.4. The following statements hold:

(i) The space Y^0 is an order ideal of Y, that is, it is a closed linear subspace of Y with the property:

\[f \in Y^0 \text{ and } |g| \leq |f| \text{ almost everywhere } \Rightarrow g \in Y^0. \]

(ii) The subspace $\overline{W}_{\|\cdot\|}$ is an order ideal of Y and $Y^0 \subset \overline{W}_{\|\cdot\|} \subset Y$.

(iii) The subspaces Y^0 and $\overline{W}_{\|\cdot\|}$ coincide if and only if the characteristic function $\chi_{[0,1]}$ has absolutely continuous norm. In particular, $Y^0 = \overline{W}_{\|\cdot\|} = Y$ whenever Y has absolutely continuous norm.

We recall the following useful characterisation of convergent sequences in Y^0.

Lemma 2.5. ([2, p. 41]) A sequence \(\{f_n\} \) converges to \(f \) in \(Y^0 \) if and only if \(\{f_n\} \) converges to \(f \) in measure and the family \(\{f_n : n \in N\} \) has uniformly absolutely continuous norm, that is, for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(\sup_n \|f_n \chi_D\| < \varepsilon \) for every \(D \in \Sigma \) with \(\mu(D) < \delta \).

Let \(C([0,1]) \) denote the Banach space of all real and continuous functions on \([0,1]\) endowed with the sup norm \(\|\cdot\|_\infty \). By a standard argument (see for example [15, Theorem 3.14]) it can be shown the following lemma.

Lemma 2.6. Assume \(Y^0 = \overline{W}^{\|\cdot\|} \), then \(C([0,1]) \) is dense in \(Y^0 \).

3. Proper \(k \)-ball contractive retractions: abstract results.

Let \(X \) denote the Banach space of all functions of absolutely continuous norm of a Banach function space \(Y \). We still denote by \(W \) the subset of \(Y \) of all simple functions. For \(f \in X \) and \(a \in [1,2] \), we set

\[
f_a(t) = \begin{cases} f(at) & \text{if } t \in \left[0, \frac{1}{a}\right], \\ 0 & \text{if } t \in \left(\frac{1}{a}, 1\right]. \end{cases}
\]

Throughout this section we assume that the Banach space \(X \) satisfies the following properties:

(P1) \(X = \overline{W}^{\|\cdot\|} \);

(P2) there is a continuous decreasing function \(\alpha : [1,2] \to \mathbb{R} \) with \(\alpha(1) = 1 \) and \(\alpha(2) > 0 \) such that

\[
\alpha(a)\|f\| \leq \|f_a\| \leq \|f\|,
\]

for every \(f \in X \) and \(a \in [1,2] \). Then it is easy to check that \(f_a \in X \).

Now for any continuous function \(g \in X \) we set \(A_g = \{g_a : a \in [1,2]\} \). We need the following two lemmas, the proofs of which are straightforward.

Lemma 3.1. Let \(g \in X \) be continuous. Then the set \(A_g \) is compact.

Proof: Let \(g \in X \) be continuous. For any \(a \in [1,2] \), we have \(|g_a| \leq \|g\|_{\infty}\chi_{[0,1]} \), and then (1) implies

\[
\|g_a\| \leq \|g\|_{\infty}\|\chi_{[0,1]}\|.
\]

From the last inequality it follows that \(A_g \) has uniformly absolutely continuous norm. Let now \(\{g_{a_n}\} \) be a sequence of elements of \(A_g \). Choose a subsequence \(\{a_{n_k}\} \) of \(\{a_n\} \) which is convergent, say to \(a \). It is easy to check that \(g_{a_{n_k}} \to g_a \) almost everywhere in \([0,1]\), so that \(g_{a_{n_k}} \to g_a \) in measure. By Lemma 2.5, the thesis follows.

Lemma 3.2. Let \(g \in X \) be continuous and \(a_n \to a \) (\(a_n \in [1,2] \)). Then \(\|g_{a_n} - g_a\| \to 0 \).
Proof: Let \(g \in X \) be continuous and \(a_n \to a \ (a_n \in [1, 2]) \). Given \(\varepsilon > 0 \), as \(A_g \) has uniformly absolutely continuous norm, there exists \(\delta > 0 \) such that \(\|g_{a} \chi_{D}\| < \varepsilon \) and \(\|g_{a_n} \chi_{D}\| < \varepsilon \) for all \(n \in \mathbb{N} \) whenever \(D \in \Sigma \) and \(\mu(D) < \delta \). Find an index \(\nu \) such that for all \(n \geq \nu \) we have \(\frac{1}{a_n} \in (1/a - \delta/2, 1/a + \delta/2) \) and \(|g(a_n t) - g(at)| \leq \varepsilon \) for all \(t \in [0, 1] \) with \(t \leq 1/a - \delta/2 \). Then \(\sup_{[0,1/a-\delta/2]} |g(a_n(t)) - g(a(t))| \leq \varepsilon \) and so

\[
\| (g_{a_n} - g_a) \chi_{[0,1/a-\delta/2]} \| \leq \varepsilon \| \chi_{[0,1]} \|.
\]

Hence for every \(n \geq \nu \) we have

\[
\|g_{a_n} - g_a\| \leq \| (g_{a_n} - g_a) \chi_{[0,1/a-\delta/2]} \| + \| (g_{a_n} - g_a) \chi_{[1/a-\delta/2,1/a+\delta/2]} \| \\
\leq \varepsilon \| \chi_{[0,1]} \| + 2\varepsilon,
\]

and the thesis follows.

\[\square\]

Remark 3.3. If \(a_n \to a \ (a_n \in [1, 2]) \) by the same argument of Lemma 3.2 we have

\[
\| \chi_{(1/a_n,1]} - \chi_{(1/a,1]} \| \to 0.
\]

We now define a mapping \(Q : B(X) \to B(X) \) and establish the properties of \(Q \) we need. The explicit formula of a retraction \(R \), of which we can estimate the H-measure of noncompactness (that is, the infimum of all \(k \geq 1 \) for which \(R \) is a \(k \)-ball contractive retraction) and the lower H-measure of noncompactness, will depend on a suitable compact mapping \(P_X : B(X) \to X \) satisfying the hypotheses of the subsequent Theorem 3.6. To define \(Q : B(X) \to B(X) \) we set

\[
(Qf)(t) = f_2/(1+\|f\|)(t), \text{ for all } t \in [0,1].
\]

We clearly have \(Qf = f \) for all \(f \in S(X) \).

Proposition 3.4. The mapping \(Q \) is continuous.

Proof: Let \(\{f_n\} \) be a sequence of elements of \(B(X) \) such that \(\|f_n - f\| \to 0 \). Let \(\varepsilon > 0 \). By Lemma 2.6 there is a continuous \(g \in B(X) \) such that \(\|f - g\| \leq \varepsilon \). Choose and index \(\nu \) such that for all \(n \geq \nu \) we have \(\|f - f_n\| \leq \varepsilon \), by Lemma 3.2 we may also assume \(\|g_{2/(1+\|f_n\|)} - g_{2/(1+\|f\|)}\| \leq \varepsilon \). Using the last inequality and the right hand side of \((2) \) we get, for all \(n \geq \nu \)

\[
\|Qf_n - Qf\| \leq \| (f_n)_{2/(1+\|f_n\|)} - f_{2/(1+\|f_n\|)} \| + \| f_{2/(1+\|f_n\|)} - g_{2/(1+\|f_n\|)} \| \\
+ \| g_{2/(1+\|f_n\|)} - g_{2/(1+\|f\|)} \| + \| g_{2/(1+\|f\|)} - f_{2/(1+\|f\|)} \| \\
= \| (f_n - f)_{2/(1+\|f_n\|)} \| + \| (f - g)_{2/(1+\|f\|)} \| \\
+ \| g_{2/(1+\|f_n\|)} - g_{2/(1+\|f\|)} \| + \| (g - f)_{2/(1+\|f\|)} \| \leq 4\varepsilon,
\]

which gives the thesis. \[\square\]
Proposition 3.5. Let \(A \subset B(X) \). Then
\[
\alpha(2) \gamma(A) \leq \gamma(QA) \leq \gamma(A).
\]

Proof: Let \(A \subset B(X) \). We prove the right inequality. Let \(\beta > \gamma(A) \). By Lemma 2.6, \(C([0,1]) \) is dense in \(X \), thus there exists a \(\beta \)-net \(\{\varphi_1, \ldots, \varphi_p\} \) for \(A \) in \(C([0,1]) \). By Lemma 3.1 the set \(\bigcup_{i=1}^{p} A_{\varphi_i} \) is compact, hence given \(\delta > 0 \) we can choose a \(\delta \)-net \(\{\psi_1, \ldots, \psi_q\} \) for \(\bigcup_{i=1}^{p} A_{\varphi_i} \) in \(X \). We now show that \(\{\psi_1, \ldots, \psi_q\} \) is a \((\beta + \delta) \)-net for \(QA \) in \(X \).

Let \(g \in QA \) and let \(f \in A \) be such that \(Qf = g \). Fix \(i \in \{1, \ldots, p\} \) such that \(\|f - \varphi_i\| \leq \beta \). Since \((\varphi_i)_{2/(1+\|f\|)} \in A_{\varphi_i} \) we can find \(j \in \{1, \ldots, q\} \) such that
\[
\|(\varphi_i)_{2/(1+\|f\|)} - \psi_j\| \leq \delta.
\]
Then
\[
\|Qf - \psi_j\| \leq \|(\varphi_i)_{2/(1+\|f\|)} - (\varphi_i)_{2/(1+\|f\|)}\| + \|(\varphi_i)_{2/(1+\|f\|)} - \psi_j\| \\
\leq \|f - \varphi_i\| + \delta \leq \beta + \delta.
\]
Therefore \(\gamma(QA) \leq \beta + \delta \), so \(\gamma(QA) \leq \gamma(A) \).

We now prove the left inequality. Let \(\eta > \gamma(QA) \). As \(C([0,1]) \) is dense in \(X \), there exists an \(\eta \)-net \(\{\lambda_1, \ldots, \lambda_n\} \) for \(QA \) in \(C([0,1]) \). For \(i = 1, \ldots, n \), set \((\lambda_i)^b(t) = \lambda_i(bt) \) for \(t \in [0,1] \) and \(b \in [1/2, 1] \). Since each \((\lambda_i)^b \) is a continuous mapping, the set \(\bigcup_{i=1}^{n} \{(\lambda_i)^b : b \in [1/2, 1]\} \) is compact with respect to the \(\| \cdot \|_\infty \) norm and hence is compact in \(X \). Hence for any \(\delta > 0 \) we can choose a \(\delta \)-net \(\{\xi_1, \ldots, \xi_m\} \) for \(\bigcup_{i=1}^{n} \{(\lambda_i)^b : b \in [1/2, 1]\} \) in \(X \).

We now show that \(\{\xi_1, \ldots, \xi_m\} \) is an \((\eta/\alpha(2) + \delta) \)-net for \(A \) in \(X \).

Let \(f \in A \). Fix \(i \in \{1, \ldots, n\} \) such that \(\|Qf - \lambda_i\| \leq \eta \). Since
\[
(\lambda_i)^{(1+\|f\|)/2} \in \{(\lambda_i)^b : b \in [1/2, 1]\}
\]
we can find \(j \in \{1, \ldots, m\} \) such that \(\|(\lambda_i)^{(1+\|f\|)/2} - \xi_j\| \leq \delta \). Then
\[
\|f - \xi_j\| \leq \|f - (\lambda_i)^{(1+\|f\|)/2}\| + \|(\lambda_i)^{(1+\|f\|)/2} - \xi_j\| \\
\leq \frac{1}{\alpha(2)} \|f_{2/(1+\|f\|)} - (\lambda_i)^{(1+\|f\|)/2}_{2/(1+\|f\|)}\| + \delta \\
\leq \frac{1}{\alpha(2)} \|Qf - \lambda_i\| + \delta \leq \frac{\eta}{\alpha(2)} + \delta.
\]
Therefore \(\gamma(A) \leq \eta/\alpha(2) + \delta \), so \(\alpha(2) \gamma(A) \leq \gamma(QA) \).

Theorem 3.6. Let \(P_X : B(X) \to X \) be a compact mapping with \(P_X f = 0 \) for all \(f \in S(X) \), and
\[
\|Qf + P_X f\| \geq m,
\]
for some \(m \in (0, 1] \) and all \(f \in B(X) \). Then the mapping \(R : B(X) \to S(X) \) defined by

\[
Rf = \frac{Qf + P_X f}{\|Qf + P_X f\|},
\]

is a \((1/m)\) -ball contractive retraction. Moreover \(\omega(R) \geq \alpha(2)/l \) whenever \(\|Qf + P_X f\| \leq l \) for all \(f \in B(X) \). In particular, if \(\|Qf + P_X f\| = 1 \) for all \(f \in B(X) \), the retraction \(R \) is 1-ball contractive and \(\omega(R) \geq \alpha(2) \).

Proof: Clearly the mapping \(R \) defined in (5) is a retraction. Let \(A \subseteq B(X) \). Since \(P_X \) is compact, it follows from Proposition 3.5 that

\[
\alpha(2) \gamma(A) \leq \gamma((Q + P_X) A) \leq \gamma(A).
\]

Moreover by the definition of \(R \) and by (4) we get

\[
RA \subset [0, \frac{1}{m}] \cdot (Q + P_X) A.
\]

Using the properties of \(\gamma \), from (6) it follows \(\gamma(RA) \leq (1/m) \gamma(A) \). Similarly if \(\|Qf + P_X f\| \leq l \) for all \(f \in B(X) \) we have

\[
(Q + P_X) A \subset [0, l] \cdot RA.
\]

Therefore \((\alpha(2)/l) \gamma(A) \leq \gamma(RA) \), and the proof is complete.

Observe that \(\|Qf + P_X f\| = 1 \) for \(f \in S(X) \), so in condition (4) we necessarily have \(m \leq 1 \).

Remark 3.7. Whenever in a Banach space \(X \) we find \(\alpha(a) \|f\| = \|f_a\| \), for all \(f \in B(X) \) (a stronger condition than (2)) we modify the mapping \(Q \) defined in (3) by setting

\[
(Qf)(t) = \frac{1}{\alpha(2/(1 + \|f\|))} f_{2/(1 + \|f\|)}(t), \quad \text{for all } t \in [0, 1].
\]

As no confusion can arise we keep denoting this mapping by \(Q \). Then \(\|Qf\| = \|f\| \) for all \(f \in B(X) \). Clearly \(Q \) is still a continuous mapping and, by slight modifications of the previous arguments and of Proposition 3.5, we get \(\gamma(QA) = \gamma(A) \). This allow us to obtain a better estimate of the lower \(H \)-measure of noncompactness of the retraction \(R \) defined as in (5). In fact, under the same hypotheses of Theorem 3.6, we get \(\omega(R) \geq 1/l \).

Corollary 3.8. The retraction \(R \) defined in (5) is a proper mapping.

4. **The Orlicz spaces \(L_\Phi \).**

Let \(\Phi : [0, \infty) \to [0, \infty) \) be a continuous strictly increasing Young’s function. Assume that \(\Phi \) satisfies the \(\Delta_2 \)-condition, that is, there is \(c \in [0, \infty) \) such that \(\Phi(2x) \leq c \Phi(x) \) \((x \geq 0)\). For \(f \in M_0 \) set

\[
M^\Phi(f) = \int_{[0,1]} \Phi\left(\left|f(t)\right|\right) dt.
\]
Then

\[\rho_\Phi(f) = \inf \left\{ u > 0 : M^\Phi \left(\frac{f}{u} \right) \leq 1 \right\} \ (f \in \mathcal{M}_0^+) \]

is a Banach function norm, and the Banach function space

\[L_\Phi := L_\Phi[0,1] = \left\{ f \in \mathcal{M}_0 : \rho_\Phi(|f|) < \infty \right\} \]

is the Orlicz space generated by \(\Phi \) endowed with the Luxemburg norm \(\|f\|_\Phi = \rho_\Phi(|f|) \).

The Orlicz space \(L_\Phi \) is of absolutely continuous norm (see for example [14]). Then by Lemma 2.4 the space \(L_\Phi \) satisfies property (P2). The following lemma proved in [12] shows that (P2) holds in \(L_\Phi \).

Lemma 4.1. ([12, Lemma 2.3]) Let \(f \in L_\Phi \) and \(a \in [1,2] \). Then

\[\frac{1}{a} \|f\|_\Phi \leq \|f_a\|_\Phi \leq \|f\|_\Phi. \]

Let \(Q : B(L_\Phi) \to B(L_\Phi) \) be defined as in (3) and define \(P_\Phi : B(L_\Phi) \to L_\Phi \) by

\[P_\Phi f = \begin{cases}
\Phi^{-1} \left(\frac{2}{1 - \|f\|_\Phi} \left(1 - M^\Phi(Qf) \right) \right) \chi_{\left((1 + \|f\|_\Phi)/2, 1 \right]} & \text{if } f \in B(L_\Phi) \setminus S(L_\Phi) \\
0 & \text{if } f \in S(L_\Phi).
\end{cases} \]

Lemma 4.2. The mapping \(P_\Phi \) is compact.

Proof: We prove that \(P_\Phi B(L_\Phi) \) is relatively compact and \(P_\Phi \) is continuous. Let \(\{g_n\} \) be a sequence of elements of \(P_\Phi B(L_\Phi) \) and \(\{f_n\} \) be a sequence of elements of \(B(L_\Phi) \) such that \(P_\Phi f_n = g_n \), for all \(n \). Since \(0 \leq \|f_n\|_\Phi \leq 1 \) and \(0 \leq M^\Phi(Qf_n) \leq \|Qf_n\|_\Phi \leq 1 \) for all \(n \), we can choose subsequences \(\{|f_{n_k}\|_\Phi\} \), \(\{|Qf_{n_k}\|_\Phi\} \) and \(\{M^\Phi(Qf_{n_k})\} \) which converge, say to \(b, c \) and \(c_\Phi \), respectively.

If \(b = 1 \) then by Lemma 4.1, \(\|Qf_{n_k}\|_\Phi \to 1 \) and consequently

\[M^\Phi(Qf_{n_k}) \to 1 \]

Since \(M^\Phi(P_\Phi f_{n_k}) = 1 - M^\Phi(Qf_{n_k}) \) we have \(M^\Phi(P_\Phi f_{n_k}) \to 0 \) and hence \(\|P_\Phi f_{n_k}\|_\Phi \to 0 \). This implies that \(\{g_{n_k}\} \) converges in norm to the null function. Assume \(b < 1 \) and write

\[
\left\| P_\Phi f_{n_k} - \Phi^{-1} \left(\frac{2}{1 - b} (1 - c_\Phi) \right) \chi_{\left((1 + b)/2, 1 \right]} \right\|_\Phi
\]

\[
= \left\| \Phi^{-1} \left(\frac{2}{1 - \|f_{n_k}\|_\Phi} \left(1 - M^\Phi(Qf_{n_k}) \right) \right) \chi_{\left((1 + \|f_{n_k}\|_\Phi)/2, 1 \right]} \right\|_\Phi
\]

\[
- \Phi^{-1} \left(\frac{2}{1 - b} (1 - c_\Phi) \right) \chi_{\left((1 + b)/2, 1 \right]} \right\|_\Phi.
\]

By Remark 3.3 we have

\[
\left\| \chi_{\left((1 + \|f_{n_k}\|_\Phi)/2, 1 \right]} - \chi_{\left((1 + b)/2, 1 \right]} \right\|_\Phi \to 0
\]
and by the continuity of Φ^{-1} we also have
\[
\Phi^{-1}\left(\frac{2}{1 - \|f_{n_k}\|_\Phi} (1 - M^{\Phi}(Qf_{n_k}))\right) \to \Phi^{-1}\left(\frac{2}{1 - b} (1 - c_\Phi)\right).
\]
Thus we get
\[
\left\| P_{\Phi} f_{n_k} - \Phi^{-1}\left(\frac{2}{1 - b} (1 - c_\Phi)\right) \chi((1+b/2), 1]\right\|_\Phi \to 0.
\]
We have proved that $P_{\Phi} B(L_{\Phi})$ is relatively compact.

Let now $\{f_n\}$ be a sequence of elements of $B(L_{\Phi})$ such that $\|f_n - f\|_\Phi \to 0$, then, as the Δ_2-condition holds, $M^{\Phi}(f_n) \to M^{\Phi}(f)$. An argument similar to that of the first part of the proof implies $\|P_{\Phi} f_n - P_{\Phi} f\|_\Phi \to 0$. The proof is complete. $lacksquare$

Lemma 4.3. Let $f \in B(L_{\Phi})$, then
\[
\|Qf + P_{\Phi} f\|_\Phi = 1.
\]

Proof: Observe that, for any $u > 0$ we have
\[
M^{\Phi}\left(\frac{Qf + P_{\Phi} f}{u}\right) = M^{\Phi}\left(\frac{Qf}{u}\right) + M^{\Phi}\left(\frac{P_{\Phi} f}{u}\right).
\]
Now for $u = 1$ we get
\[
M^{\Phi}(Qf + P_{\Phi} f) = \int_{\left[(1 + \|f\|_\Phi)/2, 1\right]} \Phi\left(\Phi^{-1}\left(\frac{2}{1 - \|f\|_\Phi} (1 - M^{\Phi}(Qf))\right)\right) dt + M^{\Phi}(Qf)
\]
\[
= \int_{\left[(1 + \|f\|_\Phi)/2, 1\right]} \frac{2}{1 - \|f\|_\Phi} (1 - M^{\Phi}(Qf)) dt + M^{\Phi}(Qf) = 1
\]
It follows that $\|Qf + P_{\Phi} f\|_\Phi \leq 1$. On the other hand if $0 < u < 1$
\[
M^{\Phi}\left(\frac{Qf + P_{\Phi} f}{u}\right) > M^{\Phi}(Qf + P_{\Phi} f),
\]
consequently $\|Qf + P_{\Phi} f\|_\Phi = 1$. $lacksquare$

From Lemmas 4.1, 4.2 and 4.3 and Theorem 3.6 we obtain the following.

Theorem 4.4. The mapping $R : B(L_{\Phi}) \to S(L_{\Phi})$ defined by
\[
Rf = Qf + P_{\Phi} f
\]
is a 1-ball contractive retraction and $\omega(R) \geq 1/2$.

Observe that, if $\Phi(t) = t^p$ where $1 \leq p < \infty$, then L_{Φ} is the Lebesgue space $L_p := L_p[0, 1]$, with the standard norm $\| \cdot \|_p$. But in this case an easy computation shows that $(1/a)^{1/p}\|f\|_p = \|f_a\|_p$. Hence, according to Remark 3.7, a stronger result on the characteristic $\omega(R)$ holds. Define $Q : B(L_p) \to B(L_p)$ (as in (7)) by
\[
(Qf)(t) = \left(\frac{2}{1 + \|f\|_p}\right)^{1/p} f_{2/(1+\|f\|_p)}(t), \quad \text{for all } t \in [0, 1].
\]
Next define $P_p : B(L_p) \to L_p$ by

$$P_p f = \begin{cases}
\frac{2}{1 - \|f\|_p} \left(1 - \|f\|_p^p\right)^{1/p} X_{(1+\|f\|_p)/2,1} & \text{if } f \in B(L_p) \setminus S(L_p) \\
0 & \text{if } f \in S(L_p).
\end{cases}$$

Then the following theorem holds.

Theorem 4.5. The mapping $R : B(L_p) \to S(L_p)$ $(1 \leq p < \infty)$ defined by

$$Rf = Qf + P_p f$$

is a 1-ball contractive retraction and $\omega(R) = 1$.

The results obtained in the Lebesgue spaces L_p can be generalised to the weighted spaces. Let ρ be a measurable weighting function. We consider the weighted Lebesgue space

$$L_p(\rho) := L_p([0, 1], \rho) \ (1 \leq p < \infty)$$

which consists of all $f \in M_0$ such that $\rho^{1/p} f \in L_p$, endowed with the norm

$$\|f\|_{L_p(\rho)} = \left(\int_{[0,1]} \rho(t) |f(t)|^p \, dt\right)^{1/p}.$$

The space $L_p(\rho)$ has absolutely continuous norm.

We define a mapping $Q_\rho : B(L_p(\rho)) \to B(L_p(\rho))$ by a slight modification of (7)

$$(Q_\rho f)(t) = \left(\rho^{2/(1+\|f\|_{L_p(\rho)})}(t)/\rho(t)\right)^{1/p} \left(\frac{2}{1 + \|f\|_{L_p(\rho)}}\right)^{1/p} f_{2/(1+\|f\|_{L_p(\rho)})}(t) \text{ for all } t \in [0, 1]$$

and define $P_\rho : B(L_p(\rho)) \to L_p(\rho)$ by

$$P_\rho f = \begin{cases}
\left(\frac{2}{1 - \|f\|_{L_p(\rho)}^p}\right)^{1/p} \left(1 - \frac{\|f\|_{L_p(\rho)}^p}{\rho(t)}\right)^{1/p} X_{(1+\|f\|_p)/2,1} & \text{if } f \in B(L_p(\rho)) \setminus S(L_p(\rho)) \\
0 & \text{if } f \in S(L_p(\rho)).
\end{cases}$$

Set

$$C([0, 1], \rho) = \{g/\rho^{1/p} : g \in C[0, 1]\}$$

and

$$W(\rho) = \{s/\rho^{1/p} : s \in W\}.$$

Then $C([0, 1], \rho)$ is dense in $L_p([0, 1], \rho)$ and $L_p([0, 1], \rho) = \overline{W(\rho)^{1/p} L_p(\rho)}$. Moreover for a continuous function g, the set $A_g(\rho) = \{g_a/\rho^{1/p} : a \in [1, 2]\}$ is compact. Then the same arguments of Section 3 allow us to obtain the following.
Corollary 4.6. The mapping

\[R : B(L_p(\rho)) \to S(L_p(\rho)) \quad (1 \leq p < \infty) \]

defined by \(Rf = Q_\rho f + P_\rho f \) is a 1-ball contractive retraction with \(\omega(R) = 1 \).

In this section we have improved the results in the \(L_p \) and \(L_\Phi \) spaces of \([17, 12]\), respectively. Though the mapping \(Q \) is the same as the one introduced in those papers, here we construct in both cases a different retraction \(R \) and, above all, our proofs are based on different ideas and techniques.

5. The Lorentz spaces \(L^{p,q} \).

Let \(f^* \) denote the decreasing rearrangement of a function \(f \in \mathcal{M}_0 \), given by

\[
 f^* (t) = \inf \left\{ s \geq 0 : \mu \{ |f(x)| > s \} \leq t \right\}
\]

The Lorentz space \(L^{p,q} := L^{p,q}([0,1]) \) (\(1 \leq q \leq p < \infty \)) consists of all \(f \in \mathcal{M}_0 \) for which the quantity

\[
 \|f\|_{p,q} = \left(\frac{q}{p} \int_{[0,1]} \left(t^{1/p} f^*(t) \right)^q \frac{dt}{t} \right)^{1/q}
\]

is finite. As the Lorentz space \(L^{p,q} \) is reflexive (see for example \([14]\)) from \([3, Corollary 4.4]\) it follows that it has absolutely continuous norm. Hence by Lemma 2.4 the space \(L^{p,q} \) satisfies property (P1).

Lemma 5.1. Let \(f \in L^{p,q} \) and \(a \in [1,2] \), then

\[
 \left(\frac{1}{a} \right)^{1/p} \|f\|_{p,q} = \|f_a\|_{p,q}.
\]

Proof: Let \(f \in L^{p,q} \). We observe that we have \((f_a)^* = (f^*)_a\). Then the lemma follows by a direct computation of \(\|f_a\|_{p,q}^q \). Indeed we have

\[
 \|f_a\|_{p,q}^q = \frac{q}{p} \int_{[0,1]} t^{(q/p)-1} ((f_a)^*(t))^q \, dt = \frac{q}{p} \int_{[0,1]} t^{(q/p)-1} ((f^*)_a(t))^q \, dt
\]

\[
 = \frac{q}{p} \int_{[0,1/a]} t^{(q/p)-1} (f^*(at))^q \, dt
\]

\[
 = \left(\frac{1}{a} \right)^{q/p} \frac{q}{p} \int_{[0,1]} t^{(q/p)-1} (f^*(t))^q \, dt = \left(\frac{1}{a} \right)^{(q/p)} \|f\|_{p,q}^q,
\]

hence the thesis.

In view of Lemma 5.1 and Remark 3.7 we define \(Q : B(L^{p,q}) \to B(L^{p,q}) \) (as in (7)) by

\[
 (Qf)(t) = \left(\frac{2}{1 + \|f\|_{p,q}} \right)^{1/p} f_{2/(1+\|f\|_{p,q})}(t), \quad \text{for all} \ t \in [0,1].
\]
Next define \(P_{p,q} : B(L^{p,q}) \to L^{p,q} \)

\[
P_{p,q} f = \begin{cases}
\left(\frac{2}{1 - \|f\|_{p,q}} \right)^{1/p} (1 - \|f\|_{p,q}^{q/1/q})^{1/q} \chi \left((1 + \|f\|_{p,q})/2, 1 \right) & \text{if } f \in B(L^{p,q}) \setminus S(L^{p,q}) \\
0 & \text{if } f \in S(L^{p,q}).
\end{cases}
\]

We have that the mapping \(P_{p,q} \) is compact and \(\|Qf + P_{p,q} f\|_{p,q} = 1 \) for all \(f \in B(L^{p,q}) \). Hence by Theorem 3.6 and Remark 3.7 we obtain the following.

Theorem 5.2. The mapping

\[
R : B(L^{p,q}) \to S(L^{p,q}) \quad (1 \leq q \leq p < \infty)
\]

defined by

\[
Rf = Qf + P_{p,q} f
\]

is a 1-ball contractive retraction and \(\omega(R) = 1 \).

The questions whether or not \(W(X) = 1 \) in any infinite-dimensional Banach space \(X \), and eventually if this value is always a minimum remain open.

We conclude this section with some remarks on fixed point free self-mappings of the unit ball \(B(X) \). In [1, Theorem 3] the following theorem has been proved.

Theorem 5.3. Let \(X \) be an infinite-dimensional Banach space and \(\varepsilon > 0 \). Then there exists a fixed point free 1-ball contraction \(F : B(X) \to B(X) \) with \(\omega(F) \geq 1 - \varepsilon \).

We have that, in some Banach spaces, the best value \(\omega(F) = 1 \) can be attained by a fixed point free 1-ball contraction \(F : B(X) \to B(X) \). Indeed if \(R : B(X) \to S(X) \) is a \(k \)-ball contractive retraction, then \(F = -R : B(X) \to B(X) \) is a fixed point free \(k \)-ball contraction. As a consequence of Corollary 4.6 and Theorem 5.2 we obtain the following.

Corollary 5.4. Let \(X \) denote either the weighted Lebesgue space \(L_p(\rho) \) \((1 \leq p < \infty)\) or the Lorentz space \(L^{p,q} \) \((1 \leq q \leq p < \infty)\). Then there exists a fixed point free 1-ball contraction \(F : B(X) \to B(X) \) with \(\omega(F) = 1 \).

6. **Banach spaces with \((1 + \varepsilon)\)-ball contractive retractions.**

In this section we consider \(X \) to be the space of all functions of absolutely continuous norm of a Banach function space \(Y \), where \(Y \) is either the grand \(L^p \) space or the Marcinkiewicz spaces \(M_\beta \). Applying Theorem 3.6 we prove that, in both cases, for any \(\varepsilon > 0 \) there is a \((1 + \varepsilon)\)-ball contractive retraction \(R \) with positive \(H \)-lower measure of noncompactness.

Let \(1 < p < \infty \). The grand \(L^p \) space, which will be denoted by \(L^p) := L^p([0, 1]) \), introduced in [11], is defined as the space of all functions \(f \in \mathcal{M}_0 \) such that

\[
\|f\|_p = \sup_{0<\varepsilon<p-1} \left(\varepsilon \int_{[0,1]} |f(t)|^{p-\varepsilon} dt \right)^{1/(p-\varepsilon)} < \infty.
\]
We denote by \(X^p \) the set of all functions in \(L^p \) of absolutely continuous norm and by \(W \) the subset of \(L^p \) of all simple functions.

Lemma 6.1. The subspace \(X^p \) coincides with \(\overline{W}^{\|\cdot\|_p} \), and the inclusion \(X^p \subset L^p \) is proper.

Proof: Let \(\sigma > 0 \) and set \(\delta = (\sigma/(p-1))^p \). Let \(D \in \Sigma \) with \(\mu(D) < \delta \). As
\[
\sup_{0 < \varepsilon < p-1} \varepsilon^{1/(p-\varepsilon)} = p-1 \quad \text{and} \quad \sup_{0 < \varepsilon < p-1} \mu(D)^{1/(p-\varepsilon)} = \mu(D)^{1/p}
\]
we have
\[
\|X_D\|_p = \sup_{0 < \varepsilon < p-1} (\varepsilon \mu(D))^{1/(p-\varepsilon)} \leq (p-1)\mu(D)^{1/p} < \sigma.
\]
This shows that \(\chi_{[0,1]} \) has absolutely continuous norm, hence by Lemma 2.4 (iii) it follows \(X^p = \overline{W}^{\|\cdot\|_p} \). To end the proof it suffices to note that the function \(t^{-1/p} \in L^p \) has not absolutely continuous norm.

Lemma 6.2. Let \(f \in X^p \) and \(a \in [1, 2] \),
\[
\frac{1}{a} \|f\|_p \leq \|fa\|_p \leq \|f\|_p.
\]

Proof: For any \(f \in X^p \) and \(a \in [1, 2] \) we have
\[
\|fa\|_p = \sup_{0 < \varepsilon < p-1} (\varepsilon \int_{[0, \frac{a}{\varepsilon}]} |f(at)|^{p-\varepsilon} \, dt) \leq \varepsilon \mu(D)^{1/(p-\varepsilon)} \leq \|f\|_p.
\]
On the other hand we find
\[
\|f\|_p = \sup_{0 < \varepsilon < p-1} a^{1/(p-\varepsilon)} (\varepsilon \int_{[0,1]} |f(at)|^{p-\varepsilon} \, dt) \leq a\|fa\|_p,
\]
which completes the proof.

Let \(Q : B(X^p) \rightarrow B(X^p) \) be defined as in (3) and define for every \(0 < u < \infty \) the mapping \((P_p)_u : B(X^p) \rightarrow X^p \) by
\[
(P_p)_uf = \begin{cases} \frac{u^{1-\|Qf\|_p}}{\|\chi\{(1+\|f\|_p)/2,1\}\|_p} X^{(1+\|f\|_p)/2,1} & \text{if } f \in B(X^p) \setminus S(X^p) \\ 0 & \text{if } f \in S(X^p). \end{cases}
\]

Lemma 6.3. For any \(0 < u < \infty \), the mapping \((P_p)_u \) is compact, and for \(f \in B(X^p) \)
\[
\| (P_p)_uf\|_p = u(1-\|Qf\|_p)
\]

Proof: The proof that \((P_p)_u \) is compact is similar to the proof of Lemma 4.2. A direct calculation gives the norm of \((P_p)_uf \).
Lemma 6.4. Let $0 < u < \infty$. For any $f \in B(X^p)$

$$\max\{1, u\} \geq \|Qf + (P_p)_u f\|_p \geq \frac{u}{u + 1}$$

Proof: Let $f \in B(X^p)$, then

$$\|Qf + (P_p)_u f\|_p = \sup_{0 < \varepsilon < p - 1} \left(\varepsilon \int_{[0,1]} |(Qf)(t)|^{p-\varepsilon} dt + \varepsilon \int_{[0,1]} |(P_p)_u f(t)|^{p-\varepsilon} dt \right)^{1/(p-\varepsilon)}.$$

Now for any fixed $0 < \varepsilon < p - 1$

$$\varepsilon \int_{[0,1]} |(Qf)(t)|^{p-\varepsilon} dt \leq \varepsilon \int_{[0,1]} |(Qf)(t)|^{p-\varepsilon} dt + \varepsilon \int_{[0,1]} |(P_p)_u f(t)|^{p-\varepsilon} dt$$

and passing to the $1/(p - \varepsilon)$-power we have

$$\left(\varepsilon \int_{[0,1]} |(Qf)(t)|^{p-\varepsilon} dt \right)^{1/(p-\varepsilon)} \leq \left(\varepsilon \int_{[0,1]} |(Qf)(t)|^{p-\varepsilon} dt + \varepsilon \int_{[0,1]} |(P_p)_u f(t)|^{p-\varepsilon} dt \right)^{1/(p-\varepsilon)}.$$

Taking the supremum over ε we get $\|Qf + (P_p)_u f\|_p \geq \|Qf\|_p$. Analogously we get

$$\|Qf + (P_p)_u f\|_p \geq \|Qf\|_p,$$

Then

$$\|Qf + (P_p)_u f\|_p \geq \max\left\{\|Qf\|_p, u(1 - \|Qf\|_p)\right\} \geq u/u + 1.$$

On the other hand it easily follows

$$\|Qf + (P_p)_u f\|_p \leq \|Qf\|_p + u(1 - \|Qf\|_p) \leq \max\{1, u\}.$$

By Lemmas 6.1 and 6.2, the Banach space X^p satisfies properties (P1) and (P2). Hence by Lemmas 6.3 and 6.4 and Theorem 3.6 we have that the mapping $R_u : B(X^p) \to S(X^p)$ defined by

$$R_u f = \frac{Qf + (P_p)_u f}{\|Qf + (P_p)_u f\|_p}$$

is $(u + 1)/u-$ball contractive with $\omega(R_u) \geq \min\{1/2, 1/(2u)\}$. As $\lim_{u \to \infty} (u + 1)/u = 1$ we obtain the following theorem.

Theorem 6.5. For any $\varepsilon > 0$ there is a retraction

$$R : B(X^p) \to S(X^p) \ (1 < p < \infty)$$

which is $(1 + \varepsilon)$-ball contractive with $\omega(R) > 0$.
Remark 6.6. The same result of Theorem 6.5 can be proved in the small Lebesgue space L^p ($1 < p < \infty$) introduced in [7], in which the norm is defined as

$$\|f\|_{p'} = \sup_{g \in L^p} \int_{[0,1]} \frac{f(t)g(t)\, dt}{\|g\|_p}.$$

We recall that the spaces L^p have absolutely continuous norm, and the spaces L^p' are characterised as dual spaces of L^p (see [5]).

An analogous result holds in the Marcinkiewicz space

$$M_\beta := M_\beta([0, 1]) (0 < \beta < 1)$$

which consists of all $f \in M_0$ for which

$$\|f\|_\beta = \sup \frac{1}{\mu(E)^\beta} \int_E |f(t)| \, dt < \infty.$$

where the supremum is taken over all $E \in \Sigma$ with $\mu(E) > 0$. We denote by X_β the set of all functions in M_β of absolutely continuous norm and W the subset of M_β of all simple functions.

Lemma 6.7. The subspace X_β coincides with $W_{\|\cdot\|_\beta}$, and the inclusion $X_\beta \subset M_\beta$ is proper.

Proof: We prove that for every $D \in \Sigma$

$$\|\chi_D\|_\beta = \mu(D)^{1-\beta}. \tag{8}$$

By definition we have

$$\|\chi_D\|_\beta = \sup \frac{1}{\mu(E)^\beta} \mu(D \cap E).$$

Choose for every $n \in N$ a set $E_n \in \Sigma$ such that

$$\|\chi_D\|_\beta - \frac{1}{n} \leq \frac{1}{\mu(E_n)^\beta} \mu(D \cap E_n) \leq \|\chi_D\|_\beta.$$

Set $D_n = D \cap E_n$. As $D_n \subset E_n$ we get $1/(\mu(E_n)^\beta) \leq 1/(\mu(D_n)^\beta)$. Consequently,

$$\|\chi_D\|_\beta - \frac{1}{n} \leq \frac{1}{\mu(E_n)^\beta} \mu(D_n) \leq \frac{1}{\mu(D_n)^\beta} \mu(D_n) \leq \|\chi_D\|_\beta.$$

As n goes to infinity we get (8). From (8) it obviously follows that $\chi_{[0,1]}$ has absolutely continuous norm, hence (iii) of Lemma 2.4 gives $X_\beta = W_{\|\cdot\|_\beta}$. As pointed out in [2] the space M_β has not absolutely continuous norm.

It easy to check that the following lemma holds.
Lemma 6.8. Let \(f \in X_\beta \) and \(a \in [1, 2] \),
\[
\left(\frac{1}{a} \right)^{1-\beta} \|f\|_\beta \leq \|f_a\|_\beta \leq \|f\|_\beta.
\]

Now let \(Q : B(X_\beta) \to B(X_\beta) \) be defined as in (3) and define for every \(0 < u < \infty \)
the mapping \((P_\beta)_u : B(X_\beta) \to X_\beta \) by
\[
(P_\beta)_uf = \begin{cases}
 u \left(\frac{2}{1 - \|f\|_\beta} \right)^{1-\beta} (1 - \|Qf\|_\beta) \chi_{(1+\|f\|_\beta)/2,1]} & \text{if } f \in B(X_\beta) \setminus S(X_\beta) \\
 0 & \text{if } f \in S(X_\beta).
\end{cases}
\]

For every \(0 < u < \infty \), the mapping \((P_\beta)_u \) is compact and
\[
\|(P_\beta)_uf\|_\beta = u(1 - \|Qf\|_\beta).
\]

Moreover the following estimates of \(\|Qf + (P_\beta)_uf\|_\beta \) can be derived by an argument
similar to that of Lemma 6.4.

Lemma 6.9. Let \(0 < u < \infty \). For any \(f \in B(X_\beta) \)
\[
\max\{1, u\} \geq \|Qf + (P_\beta)_uf\|_\beta \geq \frac{u}{u+1}.
\]

By Lemmas 6.7 and 6.8, the Banach space \(X_\beta \) satisfies properties (P1) and (P2). Then by the previous Lemma and Theorem 3.6 we have that the mapping \(R_u : B(X_\beta) \to S(X_\beta) \) defined by
\[
R_u f = \frac{Qf + (P_\beta)_uf}{\|Qf + (P_\beta)_uf\|_\beta}
\]
is \((u+1)/u\)-ball contractive with
\[
\omega(R_u) \geq \min\{1/(2^{1-\beta}u), 1/(2^{1-\beta})\}.
\]
As \(\lim_{u \to \infty} (u+1)/u = 1 \) we obtain the following.

Theorem 6.10. For any \(\varepsilon > 0 \) there is a retraction \(R : B(X_\beta) \to S(X_\beta) \) which
is \((1+\varepsilon)\)-ball contractive with \(\omega(R) > 0 \).

References

Department of Mathematics
University of Calabria
87036 Arcavacata di Rende (CS)
Italy
e-mail: aletromb@unical.it

Department of Mathematics
University of Calabria
87036 Arcavacata di Rende (CS)
Italy
e-mail: trombetta@unical.it