Abstract
We show the stability results and Galerkintype approximations of solutions for a family of Dirichlet problems with nonlinearity satisfying some local growth conditions.
Download the article in PDF format (size 120 Kb)
References

R. A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
MR450957

S. N. Antontsev and S. I. Shmarev, “Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of the solutions”, Nonlinear Anal. 65 (2006) 728–761.
MR2232679

J. Chabrowski and Y. Fu, “Existence of solutions for p(x)Laplacian problem on a bounded domain”, J. Math. Anal. Appl. 306 (2005) 604–618.
MR2136336

I. Ekeland and R. Temam, Convex Analysis and Variational Problems (NorthHolland, Amsterdam, 1976).
MR463994

X. L. Fan and H. Zhang, “Existence of solutions for p(x)Laplacian Dirichlet problem”, Nonlinear Anal. 52 (2003) 1843–1852.
MR1954585

X. L. Fan and D. Zhao, “On the spaces L^{p}(x)(Ω) and W^{k},p(x)(Ω)”, J. Math. Anal. Appl. 263 (2001) 424–446.
MR1866056

X. L. Fan and D. Zhao, “Sobolev embedding theorems for spaces W^{k},p(x)(Ω)”, J. Math. Anal. Appl. 262 (2001) 749–760.
MR1859337

M. Galewski, “On the existence and stability of solutions for Dirichlet problem with p(x)Laplacian”, J. Math. Anal. Appl. 326 (2007) 352–362.
MR2277787

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations (Academic Press, New York, 1968).
MR244627

M. Růžička, Electrorheological fluids: Modelling and Mathematical Theory, Volume 1748 of Lecture Notes in Mathematics (SpringerVerlag, Berlin, 2000).
MR1810360

V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR Izv. 29 (1987) 33–66.
MR864171
