PERMUTABLE FUNCTIONS CONCERNING DIFFERENTIAL EQUATIONS

X. HUA, R. VAILLANCOURT and X. L. WANG

(Received 25 January 2006; revised 28 June 2006)

Communicated by P. Fenton

Abstract

Let \(f \) and \(g \) be two permutable transcendental entire functions. Assume that \(f \) is a solution of a linear differential equation with polynomial coefficients. We prove that, under some restrictions on the coefficients and the growth of \(f \) and \(g \), there exist two non-constant rational functions \(R_1 \) and \(R_2 \) such that \(R_1 \cdot f = R_2 \cdot g \). As a corollary, we show that \(f \) and \(g \) have the same Julia set: \(J(f) = J(g) \). As an application, we study a function \(f \) which is a combination of exponential functions with polynomial coefficients. This research addresses an open question due to Baker.

2000 Mathematics subject classification: primary 30D05, 37F10, 37F50; secondary 34A20.

1. Introduction and Main Results

Let \(f \) be a meromorphic function. We denote by \(T(r, f) \) the Nevanlinna characteristic of \(f \). The order and the lower order of \(f \) are defined by

\[
\lambda(f) = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}
\]

and

\[
\rho(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r},
\]

respectively, where \(M(r, f) = \max\{|f(z)| : |z| = r\} \) is the maximum modulus (see for example [8] for an introduction to Nevanlinna Theory).

This research was partially supported by the Natural Sciences and Engineering Research Council of Canada and NNSF of China, No: 10371069.

© 2007 Australian Mathematical Society 1446-8107/07 $A2.00 + 0.00
Let f and g denote two meromorphic functions. If

\[(1.1) \quad f(g) = g(f),\]

then we call f and g permutable. Many mathematicians have studied the analytic and dynamical properties of f and g. The following general results are known.

- For a given f, there exist infinitely many transcendental entire functions g such that $f(g) = g(f)$, for example, $g = f^n$ will do, where f^n denotes the n-th iterate of f: $f^n = f^{n-1}(f)$. There should be no confusion with ordinary powers, which will be explicitly written as $f^n(z)$ if necessary.

- For a given f, there are only countably many entire functions g such that (1.1) holds (see [2]).

- Let $f(z) = a e^{bz} + c \ (ab \neq 0, a, b, c \in \mathbb{C})$. If $f(g) = g(f)$ then $g = f^n$ for some $n \geq 0$ (see [1]).

In this paper we shall study relations between permutable entire functions and differential equations. In fact, we shall consider functions which are solutions of some linear differential equations of the form

\[(1.2) \quad p_n(z)f^{(n)}(z) + p_{n-1}(z)f^{(n-1)}(z) + \cdots + p_1(z)f'(z) + p_0(z)f(z) + p(z) = 0,
\]

where n is a positive integer, and $p_i (0 \leq i \leq n)$ and p are polynomials, with $p_n \neq 0$.

THEOREM 1.1. Let f and g be two permutable transcendental entire functions with $\rho(f) > 0$ and $\lambda(g) < \infty$. If

(i) $f(z)$ satisfies (1.2) with $p_0(z) \neq 0$ and $p(z)/p_0(z) \neq$ constant;

(ii) $f(z)$ cannot be a solution of any linearly differential equation of order $\leq n - 1$ with polynomial coefficients,

then there exist two nonconstant rational functions $R_1(z)$ and $R_2(z)$ such that $R_1(f) \equiv R_2(g)$.

As an application, we consider the following function $f(z)$:

\[(1.3) \quad f(z) = p(z) + p_1(z)e^{p_1(z)} + p_2(z)e^{p_2(z)} + \cdots + p_n(z)e^{p_n(z)},\]

where $p(z)$ is a polynomial, $p_i(z) \ (i = 1, \ldots, n)$ are non-zero polynomials and $q_i(z) \ (i = 1, \ldots, n)$ are polynomials with $q_i(z) - q_j(z) \neq$ constant for $1 \leq i \neq j \leq n$.

THEOREM 1.2. Let f and g be two permutable transcendental entire functions with $\lambda(g) < \infty$, where f satisfies (1.3). Assume that $p(z)$ is not a constant. Then there exist two rational functions $P_1(z)$ and $P_2(z)$ such that $P_1(f) = P_2(g)$.

REMARK. In [17], we studied a special case where \(n \leq 2 \).

Next, we list some well-known permutable transcendental entire functions of exponential type (see Ng [14] for other examples).

Example 1. Let \(f(z) = z + \gamma e^z \) and \(g(z) = z + \gamma e^z + 2k\pi i \), where \(\gamma \neq 0 \in \mathbb{C} \) and \(k \in \mathbb{Z} \). Then \(f \circ g = g \circ f \).

Example 2. Let \(g_1(z) = z + \gamma \sin z + 2k\pi \) and \(g_2(z) = -z - \gamma \sin z + 2k\pi \) and \(f(z) = z + \gamma \sin z \), where \(\gamma \neq 0 \in \mathbb{C} \) and \(k \in \mathbb{Z} \). Then \(f \circ g_1 = g_1 \circ f \) and \(f \circ g_2 = g_2 \circ f \).

Example 3. Let \(f(z) = ia \left[\exp \left(\frac{(4k+3)\pi}{8a^2} iz^2 \right) + \exp \left(-\frac{(4k+3)\pi}{8a^2} iz^2 \right) \right] \),

\[
g(z) = a \left[\exp \left(\frac{(4k+3)\pi}{8a^2} iz^2 \right) - \exp \left(-\frac{(4k+3)\pi}{8a^2} iz^2 \right) \right], \quad q(z) = \frac{(4k+3)\pi}{8a^2} iz^2,
\]

where \(a \in \mathbb{C} \), \(a \neq 0 \) and \(k \in \mathbb{N} \). It is easy to check that \(q(g) = -q(f) - (2k + 1.5)\pi i \) and \(f(g) = g(f) \).

The motivation for this research comes from the following open question in complex dynamics.

Let \(f \) be a nonlinear meromorphic function. We define

\[
F = F(f) = \{ z \in \overline{\mathbb{C}} : \text{the sequence } \{f^n\} \text{ is well defined and normal at } z \}
\]

and

\[
J = J(f) = \overline{\mathbb{C}} - F(f),
\]

where \(\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \), and the concept normal is in the sense of Montel. \(F(f) \) and \(J(f) \) are called the Fatou and Julia sets of \(f \), respectively. When there is no confusion, we briefly write \(F \) and \(J \) instead of \(F(f) \) and \(J(f) \). Clearly \(F(f) \) is open and it is well-known that \(J(f) \) is a nonempty perfect set which either coincides with \(\mathbb{C} \) or is nowhere dense in \(\mathbb{C} \). For the basic results in the dynamical system theory of transcendental functions, we refer the reader to the books [9] and [13].

Open Question 1 (Baker [1]). For two given permutable transcendental entire functions \(f \) and \(g \), does it follow that \(F(f) = F(g) \)?

This is a difficult question to answer. So far, affirmative answers to special cases of functions of \(f \) and \(g \) have been obtained (see [1, 16, 18]). When \(f \) and \(g \) are permutable rational functions, Fatou [4, 5, 6] and Julia [10] proved that they have the same Julia set.
Corollary 1.3. Let f and g satisfy the assumptions of Theorem 1.1 or Theorem 1.2. Then $J(f) = J(g)$.

2. Some Lemmas

Lemma 2.1 ([7]). Let G_0, G_1, \ldots, G_m and f be non-constant entire functions and let $h_0, h_1, \ldots, h_m (m \geq 1)$ be nonzero meromorphic functions. Suppose that K is a positive number and $\{r_j\}$ is an unbounded monotone increasing sequence of positive numbers such that, for each $j \geq 1$,

$$T(r_j, h_i) \leq KT(r_j, f) \quad (i = 0, \ldots, m)$$

and

$$T(r_j, f') \leq (1 + o(1))T(r_j, f).$$

If

$$h_0G_0(f) + h_1G_1(f) + \cdots + h_mG_m(f) \equiv 0$$

then there exist polynomials $\{p_j\} (j = 0, 1, \ldots, m)$, not all identically zero, such that

$$p_0(z)G_0(z) + p_1(z)G_1(z) + \cdots + p_m(z)G_m(z) \equiv 0.$$

Lemma 2.2 ([3]). Let $f_j(z) (j = 1, 2, \ldots, n)$ and $g_j(z) (j = 1, 2, \ldots, n, n \geq 2)$ be two systems of entire functions satisfying the following conditions:

1. $\sum_{j=1}^{n} f_j(z)e^{g_j(z)} \equiv 0$;
2. for $1 \leq j, k \leq n, j \neq k$, $g_j(z) - g_k(z)$ is non-constant;
3. for $1 \leq h, k \leq n, h \neq k, 1 \leq j \leq n, T(r, f_j) = o[T(r, e^{g_h-r_k})]$.

Then $f_j(z) \equiv 0 \ (j = 1, 2, \ldots, n)$.

To state the following result, we denote by $W(f_1, f_2, \ldots, f_n)$ the Wronskian of the functions f_1, \ldots, f_n:

$$W(f_1, f_2, \ldots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Lemma 2.3 ([15], Problem 60, Chapter VII). Let $f_j(z) (j = 1, 2, \ldots, n)$ be transcendental entire functions. If $W(f_1, \ldots, f_n) \equiv 0$ but $W(f_1, \ldots, f_{n-1}) \neq 0$, then there exist constants $c_1, c_2, \ldots, c_{n-1}$ such that

$$f_n(z) = c_1f_1(z) + c_2f_2(z) + \cdots + c_{n-1}f_{n-1}(z).$$
This implies the following lemma.

Lemma 2.4. If \(f_j(z) (j = 1, 2, \ldots, n) \) are linearly independent transcendental entire functions then \(W(f_1, \ldots, f_n) \not\equiv 0 \).

Lemma 2.5 ([19]). Let \(f \) and \(g \) be two permutable entire functions satisfying

\[
0 < \rho(f) < \lambda(f) < \infty, \quad \lambda(g) < \infty.
\]

Then for any given positive integer \(n \) there exist a positive constant \(K \) and a sequence \(\{r_j\} \) tending to \(\infty \) such that

\[
T(r_j, g^{(i)}) \leq KT(r_j, f)
\]

for all \(j \geq 1 \) and \(0 \leq i \leq n \).

Lemma 2.6 ([12]). If \(f \) and \(g \) are two permutable transcendental entire functions and there exists a nonconstant polynomial \(\Phi \) in both \(x \) and \(y \) such that

\[
\Phi(f, g) \equiv 0,
\]

then \(J(f) = J(g) \).

Lemma 2.7. Let \(n \geq 1 \), \(f \) and \(g \) be two permutable transcendental entire functions with \(\rho(f) > 0 \) and \(\lambda(g) < \infty \), and let \(p_i(z) (0 \leq i \leq n) \) and \(p(z) \) be polynomials. If

(1) \(p_n(z) \not\equiv 0 \) and \(p_0(z) \not\equiv 0 \),

(2) \(f(z) \) satisfies the following differential equation:

\[
(2.1) \quad p_n(z)f^{(n)}(z) + p_{n-1}(z)f^{(n-1)}(z) + \cdots + p_1(z)f'(z) + p_0(z)f(z) + p(z) = 0,
\]

(3) \(f(z) \) cannot be a solution of any linearly differential equation with polynomial coefficients of order \(\leq n - 1 \),

then there exist four polynomials \(Q(z), Q_0(z), Q_{n-1}(z) \) and \(Q_n(z) \), with \(Q_0(z) \not\equiv 0 \) and \(Q_n(z) \not\equiv 0 \) such that

\[
Q_{n-1}(f)p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) p_n(g) \left[p_n(g) \frac{a_n f^{n-2}(f^{n} g' - f'g'')}{(g')^{n+1}} + p_{n-1}(g) \left(\frac{f'}{g'} \right)^{n-1} \right] = 0,
\]

(2.2) \(Q_0(f) p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) p_0(g) = 0 \)

and

(2.3) \(Q(f) p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) p(g) = 0 \),

where \(a_1 = a_2 = 1 \) and \(a_n = n(n-1)/2 \) for \(n \geq 3 \).
PROOF. From (2.1) we see that \(\lambda(f) < \infty \) (see [11]). By (1.1) we have

\[
f''(g) g' = g'(f) f',
\]

\[
f''(g) g^2 + f'(g) g'' = g'(f) f'^2 + g'(f) f'',
\]

\[
f'''(g) g^3 + 3 f''(g) g^2 g' + f'(g) g''' = g'''(f) f'^3 + 3 g''(f) f' f'' + g'(f) f''',
\]

\[
f^{(4)}(g) g^4 + 6 f'''(g) g^2 g' + f''(g) A_{4,2}(g', g', g'') + f'(g) g^{(5)}
\]

\[
= g^{(4)}(f) f'^{4} + 6 g'''(f) f'^2 f'' + g''(f) B_{4,2}(f', f'', f''') + g'(f) f^{(5)},
\]

\[
f^{(5)}(g) g^5 + 10 f^{(4)}(g) g^3 g'' + f'''(g) A_{5,3}(g', \ldots, g^{(4)}) + f''(g) A_{5,2}(g', \ldots, g^{(4)})
\]

\[
+ f'(g) g^{(6)}
\]

\[
= g^{(5)}(f) f'^{5} + 10 g^{(4)}(f) f'^3 f'' + g''(f) B_{5,3}(f', \ldots, f^{(4)})
\]

\[
+ g''(f) B_{5,2}(f', \ldots, f^{(4)}) + g'(f) f^{(5)},
\]

\[
\ldots
\]

\[
f^{(n)}(g)(g')^n + f^{(n-1)}(g)a_n(g')^{n-2} g'' + f^{(n-2)}(g) A_{n,n-2}(g', \ldots, g^{(n-1)}) + \ldots
\]

\[
+ f'(g) A_{n,2}(g', \ldots, g^{(n-1)}) + f'(g) g^{(n)}
\]

\[
= g^{(n)}(f) (f')^n + g^{(n-1)}(f)a_n(f')^{n-2} f'' + g^{(n-2)}(f) B_{n,n-2}(f', \ldots, f^{(n-1)}) + \ldots
\]

\[
+ g''(f) B_{n,2}(f', \ldots, f^{(n-1)}) + g'(f) f^{(n)}
\]

where \(A_{i,j}(g', \ldots, g^{(i-2)}) (i \geq 3, 2 \leq j \leq i - 2) \) are polynomials of \(g', g'', \ldots, g^{(i-2)} \) and \(B_{i,j}(f', \ldots, f^{(i-2)}) (i \geq 3, 2 \leq j \leq i - 2) \) are polynomials of \(f', f'', \ldots, f^{(i-2)} \).

Solving the above system yields

\[
f'(g) = \frac{f'}{g'} g'(f),
\]

\[
f''(g) = \left(\frac{f'}{g'} \right)^2 g''(f) + \left[\frac{f''}{g'^2} - \frac{f' g''}{g^3} \right] g'(f),
\]

\[
f'''(g) = \left(\frac{f'}{g'} \right)^3 g'''(f) + \left[\frac{3 f' (f' g' - f'' g'')}{g^4} \right] g''(f) + C_{3,1}(f', g') g'(f),
\]

\[
f^{(4)}(g) = \left(\frac{f'}{g'} \right)^4 g^{(4)}(f) + \left[\frac{6 (f')^2 (f' g' - f'' g'')}{g^5} \right] g'''(f)
\]

\[
+ C_{4,2}(f', g') g''(f) + C_{4,1}(f', g') g'(f),
\]

\[
\ldots
\]

\[
f^{(n)}(g) = \left(\frac{f'}{g'} \right)^n g^{(n)}(f) + \left[\frac{a_n(f')^{n-2} (f'' g' - f'' g'')}{(g')^{n+1}} \right] g^{(n-1)}(f)
\]

\[
+ C_{n,2}(f', g') g^{n-2}(f) + \cdots + C_{n,1}(f', g') g'(f),
\]

where \(C_{i,j}(f', g') (i \geq 3, 1 \leq j \leq i - 2) \) are rational functions of \(g', g'', \ldots, g^{(i-1)} \) and \(f', f'', \ldots, f^{(i-1)} \).
Replacing \(z \) by \(g(z) \) in Equation (2.1) yields

\[
(2.5) \quad p_n(g) f^{(n)}(g) + p_{n-1}(g) f^{(n-1)}(g) + \cdots + p_1(g) f'(g) + p_0(g) f(g) + p(g) = 0.
\]

Substituting (1.1) and (2.4) into (2.5) we deduce that

\[
(2.6) \quad p_n(g) \left(\frac{f'}{g} \right)^n g^{(n)}(f) + \left[p_n(g) \frac{a_n(f')^{n-2}(f''g' - f'g'')}{(g')^{n+1}} + p_{n-1}(g) \left(\frac{f'}{g} \right)^{n-1} \right] g^{(n-1)}(f)
\]

\[+ D_{n,n-2}(f', g') g^{(n-2)}(f) + \cdots + D_{n,1}(f', g') g'(f) + p_0(g) g(f) + p(g) = 0,
\]

where \(D_{n,i}(f', g') \) for \(n \geq 3, 1 \leq i \leq n - 2 \) are rational functions of \(g, g', g'', \ldots, g^{(n)} \) and \(f', f'', \ldots, f^{(n)} \).

Claim 2.8. Let \(\{r_j\}_{j=1}^{\infty} \) tending to \(\infty \) be the sequence of positive numbers in Lemma 2.5. Then there exists a positive number \(K \) such that, for sufficiently large \(j \),

\[
T \left(r_j, p_n(g) \left(\frac{f'}{g} \right)^n \right) \leq KT(r_j, f),
\]

\[
T \left(r_j, p_n(g) \frac{a_n(f')^{n-2}(f''g' - f'g'')}{(g')^{n+1}} + p_{n-1}(g) \left(\frac{f'}{g} \right)^{n-1} \right) \leq KT(r_j, f) \quad \text{and}
\]

\[
T \left(r_j, D_{n,i}(f', g') \right) \leq KT(r_j, f)
\]

for all \(n \geq 3, 1 \leq i \leq n - 2 \).

Proof of Claim 2.8. We shall prove a more general result. Let \(P(f, f', \ldots, f^{(n)}, g, g', \ldots, g^{(n)}) \) be a linear combination of

\[
V(z) = b(z) f(z)^{s_0} f'(z)^{t_0} \cdots f^{(n)}(z)^{s_n} g(z)^{t_0} g'(z)^{t_1} \cdots g^{(n)}(z)^{t_n},
\]

where \(s_i, t_i \) (\(0 \leq i \leq n \)) are integers and \(b(z) \) is a rational function. We shall prove that there exists a positive constant \(K \) such that, for all sufficiently large \(j \),

\[
T(r_j, P) \leq KT(r_j, f).
\]

In fact, by Nevanlinna’s Logarithmic Derivative Lemma, (see [8, Page 105]) we have \(T(r, f') \leq T(r, f) + O(\log r) \). Then, for \(0 \leq i \leq n \),

\[
T(r_j, f^{(i)}) \leq T(r_j, f) + O(\log r).
\]
Since $\rho(f) > 0$, \(\liminf_{r\to\infty} (\log T(r, f)/\log r) = \rho(f) > 0\). Thus, for sufficiently large \(r\),

$\log r \leq \frac{\rho(f)}{2} \log T(r, f) = o(T(r, f)).$

Combining this with the above inequality implies that

\[T(r_j, f^{(i)}) \leq 2T(r_j, f). \]

Now, by Lemma 2.5, there exists a positive constant \(K_1\) such that

\[T(r_j, g^{(i)}) \leq K_1T(r_j, f) \quad \text{for } j \geq 1 \text{ and } 0 \leq i \leq n. \]

By Nevanlinna’s First Fundamental Theorem, \(T(r, 1/f) \leq 2T(r, f)\) for sufficiently large \(r\). Note that \(T(r, b) = o(T(r, f))\). Thus, from (2.7) and (2.8),

\[T(r_j, V) \leq T(r_j, b) + \sum_{i=0}^{n} 2|s_i|T(r_j, f^{(i)}) + \sum_{i=0}^{n} 2|t_i|T(r_j, g^{(i)}) \leq K_2T(r_j, f) \]

for some positive constant \(K_2\) and for sufficiently large \(j\). Therefore, there exists a positive constant \(K\) such that

\[T(r_j, P) \leq KT(r_j, f) \]

for sufficiently large \(j\). Claim 2.8 follows.

Now by (2.6), Claim 2.8 and Lemma 2.1, there exist \(n + 2\) polynomials \(Q_n(z), Q_{n-1}(z), \ldots, Q_1(z), Q_0(z)\) and \(Q(z)\), not all identically zero, such that

\[Q_n(z)g^{(n)}(z) + Q_{n-1}(z)g^{(n-1)}(z) + \cdots + Q_0(z)g(z) + Q(z) = 0. \]

Substituting \(z\) by \(f(z)\) in this equation, we get

\[Q_n(f)g^{(n)}(f) + Q_{n-1}(f)g^{(n-1)}(f) + \cdots + Q_0(f)g(f) + Q(f) = 0. \]

Eliminating the term \(g^{(n)}(f)\) from this and (2.6), we have

\[H_{n-1}g^{(n-1)}(f) + H_{n-2}g^{(n-2)}(f) + \cdots + H_1g'(f) + H_0g(f) + H = 0, \]

where

\[
\begin{align*}
H_{n-1} &= Q_{n-1}(f)p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) \left[p_n(g) \frac{a_n(f')^{n-2}(f''g' - f'g'')}{(g')^{n+1}} + p_{n-1}(g) \left(\frac{f'}{g'} \right)^{n-1} \right], \\
\cdots \\
H_1 &= Q_1(f)p_n(g) \left(\frac{f'}{g'} \right)^n - Q_0(f)p_0(g), \\
H &= Q(f)p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f)p(g).
\end{align*}
\]
CLAIM 2.9. \(H_i \equiv 0 \) for \(0 \leq i \leq n-1 \) and \(H \equiv 0 \).

PROOF OF CLAIM 2.9. Without loss of generality, we suppose on the contrary that \(H_{n-1} \not\equiv 0 \).

Then, from (1.1), (2.4) and (2.9) we deduce that
\[
H_{n-1} \left(\frac{g'}{f'} \right)^{n-1} f^{(n-1)}(g) + E_{n-1,1}(f', g') f^{(n-2)}(g) + \cdots + E_{n-1,n-2}(f', g') f'(g) + H_0 f(g) + H = 0,
\]
where \(E_{n-1,i}(f', g')(n \geq 3, 1 \leq i \leq n-2) \) are rational functions of \(g, g', g'', \ldots, g^{(n)} \) and \(f', f'', \ldots, f^{(n)} \). By Claim 2.8 and Lemma 2.1, there exist \(n+1 \) polynomials \(t_{n-1}(z), t_{n-2}(z), \ldots, t_1(z), t_0(z) \) and \(t(z) \), not all identically zero, such that
\[
t_{n-1}(z) f^{(n-1)}(z) + t_{n-2}(z) f^{(n-2)}(z) + \cdots + t_0(z) f(z) + t(z) = 0.
\]
This contradicts condition 3 of the lemma. Claim 2.9 follows.

Thus, we have
\[
Q_{n-1}(f) p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) \left[p_n(g) \frac{a_n f^{n-2} (f'' g - f' g')}{g^{n+1}} + p_n-1(g) \left(\frac{f'}{g'} \right)^{n-1} \right] = 0,
\]
(2.10)
\[
Q_0(f) p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) p_0(g) = 0 \quad \text{and} \quad Q(f) p_n(g) \left(\frac{f'}{g'} \right)^n - Q_n(f) p(g) = 0.
\]

CLAIM 2.10. \(Q_n \not\equiv 0 \) and \(Q_0 \not\equiv 0 \).

PROOF OF CLAIM 2.10. In fact, if \(Q_n \equiv 0 \) then, by the same arguments as used in the proof of Claim 2.8, we can deduce that \(f(z) \) must be a transcendental entire solution of some differential equation with order at most \(n-1 \) and with polynomial coefficients. This is a contradiction. Hence \(Q_n \not\equiv 0 \). It follows from (2.10) that \(Q_0 \not\equiv 0 \). Claim 2.10 follows.

This completes the proof of Lemma 2.7.

3. Proof of Theorem 1.1

By (2.2) and (2.3), we have
\[
\frac{Q(f)}{Q_0(f)} = \frac{p(g)}{p_0(g)}.
\]
Let
\[R_1(z) = \frac{Q(z)}{Q_0(z)}, \quad R_2(z) = \frac{p(z)}{p_0(z)}. \]

By assumption, \(p(z)/p_0(z) \) is not a constant. Therefore \(R_2(z) \) is not constant. Also \(R_1(z) \) is not constant by (3.1).

4. Proof of Theorem 1.2

Recall that
\[f(z) = p(z) + p_1(z)e^{q_1(z)} + p_2(z)e^{q_2(z)} + \cdots + p_n(z)e^{q_n(z)}. \]

Without loss of generality, we assume that \(\deg q_1 \leq \deg q_2 \leq \cdots \leq \deg q_n \). Then \(\rho(f) = \lambda(f) = \max\{\deg q_1, \ldots, \deg q_n\} = \deg q_n \).

For \(1 \leq i \leq n \) and \(0 \leq j \leq n \), set
\[u_{i,j} = \frac{(p_i e^{q_i})^j}{e^{q_i}}. \]

It is easy to see that all \(u_{i,j} \) are non-zero polynomials. Note from (4.1) that
\[u_{i,j} = u_{i,j+1}. \]

for all \(j \geq 0 \) and \(1 \leq i \leq n \). From
\[f = p + p_1e^{q_1} + p_2e^{q_2} + \cdots + p_n e^{q_n} \]
we get
\[f^{(j)} = p^{(j)} + u_{1,j}e^{q_1} + u_{2,j}e^{q_2} + \cdots + u_{n,j}e^{q_n}, \]
for all \(j \geq 0 \).

Set
\[A = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \\ u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1,n-1} & u_{2,n-1} & \cdots & u_{n,n-1} \end{bmatrix}, \quad R_0 = \begin{bmatrix} u_{1,n} & u_{2,n} & \cdots & u_{n,n} \\ u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1,n-1} & u_{2,n-1} & \cdots & u_{n,n-1} \end{bmatrix}, \]
\[B_1 = \begin{bmatrix} f - p & p_2 & \cdots & p_n \\ f' - p' & u_{2,1} & \cdots & u_{n,1} \\ \vdots & \vdots & \ddots & \vdots \\ (f - p)^{(n-1)} & u_{2,n-1} & \cdots & u_{n,n-1} \end{bmatrix}. \]
It is easy to check that A and R_0 are two polynomials with $A \not\equiv 0$ and $R_0 \not\equiv 0$. In fact, if $A \equiv 0$, that is
\[
\begin{vmatrix}
p_{1,1} \quad p_{2,1} \quad \cdots \quad f - p

u_{1,1} \quad u_{2,1} \quad \cdots \quad f' - p'

\vdots \quad \vdots \quad \ddots \quad \vdots

u_{1,n} \quad u_{2,n} \quad \cdots \quad (f - p)^{(n-1)}
\end{vmatrix} = 0,
\]
then
\[
\begin{vmatrix}
p_{1,1}e^{q_1} \quad p_{2,1}e^{q_2} \quad \cdots \quad p_{n}e^{q_n}

u_{1,1}e^{q_1} \quad u_{2,1}e^{q_2} \quad \cdots \quad u_{n,1}e^{q_n}

\vdots \quad \vdots \quad \ddots \quad \vdots

u_{1,n-1}e^{q_1} \quad u_{2,n-1}e^{q_2} \quad \cdots \quad u_{n,n-1}e^{q_n}
\end{vmatrix} \equiv 0.
\]
Now, by Lemma 2.4, the functions $p_{1,1}e^{q_1}, p_{2,1}e^{q_2}, \ldots, p_{n}e^{q_n}$ are linearly dependent. This obviously contradicts Lemma 2.2. Similarly we can show that $R_0 \not\equiv 0$.

Now from (4.3) and (4.4), we deduce that
\[
e^{q_s} = B_s/A \quad (s = 1, \ldots, n).
\]
Substituting these into (4.4) for $j = n$, we have
\[
A f^{(n)} = p^{(n)} + u_{1,n}B_1 + u_{2,n}B_2 + \cdots + u_{n,n}B_n.
\]
Note that each B_i ($1 \leq i \leq n$) is a linear combination of $f, f', \ldots, f^{(n-1)}$. We deduce that
\[
A f^{(n)} + R_{n-1} f^{(n-1)} + \cdots + R_1 f' + R_0 f + R = 0,
\]
where R_{n-1}, \ldots, R_0 and R are polynomials.

Further, f cannot be a solution of a differential equation
\[
t_{n-1} f^{(n-1)} + t_{n-2} f^{(n-2)} + \cdots + t_1 f' + t_0 f + t = 0,
\]
where $t_{n-1}, \ldots, t_1, t_0$ and t are polynomials, not all of them zero. For suppose to the contrary that $f(z)$ is a solution of (4.5). Then this, (4.3) and (4.4) (with $j = n$) imply that
\[
(u_{1,n-1}t_{n-1} + u_{1,n-2}t_{n-2} + \cdots + u_{1,1}t_1 + t_0 p_{1})e^{q_1} + \cdots
\]
\[
+ (u_{n,n-1}t_{n-1} + u_{n,n-2}t_{n-2} + \cdots + u_{n,1}t_1 + t_0 p_{n})e^{q_n}
\]
\[
+ (t_{n-1} p^{(n-1)} + t_{n-2} p^{(n-2)} + \cdots + t_1 p + t) \equiv 0.
\]
Combining this with Lemma 2.2, we get

\[u_{1,n-1}t_{n-1} + u_{1,n-2}t_{n-2} + \cdots + u_{1,1}t_1 + t_0p_1 = 0 \]

\[\vdots \]

\[u_{n,n-1}t_{n-1} + u_{n,n-2}t_{n-2} + \cdots + u_{n,1}t_1 + t_0p_n = 0. \]

These obviously contradict \(A \not\equiv 0 \).

Thus the conditions of Lemma 2.7 are satisfied, so there exist polynomials \(Q(z) \), \(Q_0(z) \), \(Q_{n-1}(z) \) and \(Q_n(z) \), with \(Q_0(z) \not\equiv 0 \) and \(Q_n(z) \not\equiv 0 \), such that

\[Q_{n-1}(f)A(g)\left(\frac{f'}{g'} \right)^n - Q_n(f)A(g)\left(\frac{f'}{g'} \right)^{n-1} + R_{n-1}(g)\left(\frac{f'}{g'} \right)^{n-1} = 0, \]

\[Q_0(f)A(g)\left(\frac{f'}{g'} \right)^n - Q_n(f)R_0(g) = 0 \quad \text{and} \]

\[Q(f)A(g)\left(\frac{f'}{g'} \right)^n - Q_n(f)R(g) = 0. \]

We remark that

\[R_{n-1} = -u_{1,n}(-1)^{n+1} \begin{vmatrix} p_2 & p_3 & \cdots & p_n \\ u_{2,1} & u_{2,2} & \cdots & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n-1,2} & u_{n-1,3} & \cdots & u_{n-1,n} \end{vmatrix} - u_{2,n}(-1)^{n+2} \begin{vmatrix} p_1 & p_3 & \cdots & p_n \\ u_{1,1} & u_{1,2} & \cdots & u_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n-2,1} & u_{n-2,2} & \cdots & u_{n-2,n} \end{vmatrix} - \cdots - u_{n,n}(-1)^{n+n} \begin{vmatrix} p_1 & p_2 & \cdots & p_{n-1} \\ u_{1,1} & u_{1,2} & \cdots & u_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n-2,1} & u_{n-2,2} & \cdots & u_{n-2,n} \end{vmatrix} \]

\[= - \begin{vmatrix} p_1 & p_2 & \cdots & p_n \\ u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1,n-2} & u_{2,n-2} & \cdots & u_{n,n-2} \end{vmatrix} - u_{1,n}(-1)^{n+1} \begin{vmatrix} p_2 & p_3 & \cdots & p_n \\ u_{2,1} & u_{2,2} & \cdots & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n-1,1} & u_{n-1,2} & \cdots & u_{n-1,n} \end{vmatrix}. \]
Similarly, for any \(i \) with \(1 \leq i \leq n - 1 \), one has

\[
R_{n-i} = \begin{vmatrix}
 p_1 & p_2 & \cdots & p_n \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n-i-1} & u_{2,n-i-1} & \cdots & u_{n,n-i-1} \\
 u_{1,n-i+1} & u_{2,n-i+1} & \cdots & u_{n,n-i+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n} & u_{2,n} & \cdots & u_{n,n}
\end{vmatrix}.
\]

Also, it is easy to verify that

\[
R = p R_0 + p' R_1 + \cdots + p^{(n-1)} R_{n-1} - p^n A,
\]

with

\[
\deg R_0 \geq \max \{ \deg R_i \mid 1 \leq i \leq n - 1 \}, \quad \deg A.
\]

Here we only prove that \(\deg R_0 \geq \deg A \). In fact, we have

\[
\deg R_0 = \deg A + \sum_{i=1}^{n} (\deg q_i - 1).
\]

Set

\[
Z = \begin{vmatrix}
 u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n-1} & u_{2,n-1} & \cdots & u_{n,n-1} \\
 u_{1,n} & u_{2,n} & \cdots & u_{n,n}
\end{vmatrix}.
\]

To establish (4.8), we need only prove that \(\deg Z = \deg A + \sum_{i=1}^{n} (\deg q_i - 1) \). Rewrite \(Z \) by (4.2) as \(Z = Z_{11} + Z_{12} \) where

\[
Z_{11} = \begin{vmatrix}
 u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n-1} & u_{2,n-1} & \cdots & u_{n,n-1} \\
 u'_{1,n-1} & u'_{2,n-1} & \cdots & u'_{n,n-1}
\end{vmatrix},
\]

\[
Z_{12} = \begin{vmatrix}
 u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n-1} & u_{2,n-1} & \cdots & u_{n,n-1} \\
 q_1 u_{1,n-1} & q_2 u_{2,n-1} & \cdots & q_n u_{n,n-1}
\end{vmatrix}.
\]

We easily deduce that \(\deg Z = \deg Z_{12} \). Now we decompose \(Z_{12} = Z_{121} + Z_{122} \).
where

\[
Z_{121} = \begin{vmatrix}
 u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{1,n-2} & u_{2,n-2} & \cdots & u_{n,n-2} \\
 q'_{1}u_{1,n-1} & q'_{2}u_{2,n-1} & \cdots & q'_{n}u_{n,n-1}
\end{vmatrix},
\]

\[
Z_{122} = \begin{vmatrix}
 u_{1,1} & u_{2,1} & \cdots & u_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 q'_{1}u_{1,n-2} & q'_{2}u_{2,n-2} & \cdots & q'_{n}u_{n,n-2} \\
 q'_{1}u_{1,n-1} & q'_{2}u_{2,n-1} & \cdots & q'_{n}u_{n,n-1}
\end{vmatrix},
\]

We easily deduce that \(\deg Z_{12} = \deg Z_{122} \). Thus \(\deg Z = \deg Z_{122} \). This procedure can be repeated. Finally we can assert that \(\deg Z = \deg Z_{12-2} \), where

\[
Z_{12-2} = \begin{vmatrix}
 q'_{1}p_{1} & q'_{2}p_{2} & \cdots & q'_{n}p_{n} \\
 \vdots & \vdots & \ddots & \vdots \\
 q'_{1}u_{1,n-2} & q'_{2}u_{2,n-2} & \cdots & q'_{n}u_{n,n-2} \\
 q'_{1}u_{1,n-1} & q'_{2}u_{2,n-1} & \cdots & q'_{n}u_{n,n-1}
\end{vmatrix} = q'_{1}q'_{2} \cdots q'_{n}A,
\]

so establishing (4.8).

From (4.6) it follows that \(p \equiv \text{constant} \) implies \(R/R_{0} \equiv \text{constant} \). We now prove the converse. Let us suppose that

\[
\frac{R}{R_{0}} = c.
\]

By (4.6),

\[
(c - p)R_{0} = p'R_{1} + \cdots + p^{(n-1)}R_{n-1} - p^{(n)}A.
\]

If \(p \not\equiv \text{constant} \), this contradicts (4.7).

Finally, the theorem follows from Lemma 2.7 and Theorem 1.1.

5. Proof of Corollary 1.3

By (2.2) and (2.3), we have

\[
(5.1) \quad \frac{Q(f)}{Q_{0}(f)} = \frac{p(g)}{p_{0}(g)}.
\]

Let

\[
R_{1}(z) = \frac{Q(z)}{Q_{0}(z)}, \quad R_{2}(z) = \frac{p(z)}{p_{0}(z)}.
\]
By assumption, \(p(z)/p_0(z) \) is not a constant, therefore, \(R_2(z) \) is not constant. Also \(R_1(z) \) is not constant by (5.1).

We rewrite (5.1) in the form

\[
Q_0(x)p(y) - Q(x)p_0(y) = 0
\]

and consider two subcases.

If \(Q_0(x)p(y) - Q(x)p_0(y) \equiv \) constant, then by (5.2)

\[
Q_0(x)p(y) - Q(x)p_0(y) \equiv 0.
\]

Hence

\[
\frac{Q(z)}{Q_0(z)} = \frac{p(z)}{p_0(z)} = S(z)
\]

for some rational function \(S(z) \). It follows from (5.1) that

\[
S(f) = S(g).
\]

Therefore \(f = \pm g + c \) for some constant \(c \). By Baker [1], we obtain \(J(f) = J(g) \).

If \(Q_0(x)p(y) - Q(x)p_0(y) \not\equiv \) constant, then by (3.1) we get a nonconstant polynomial \(Q_0(x)p(y) - Q(x)p_0(y) \) such that

\[
Q_0(f)p(g) - Q(f)p_0(g) \equiv 0.
\]

The conclusion follows from Lemma 2.6.

References