Abstract
A Laguerre plane is a geometry of points, lines and circles where three pairwise non-collinear points lie on a unique circle, any line and circle meet uniquely and finally, given a circle C and a point Q not on it for each point P on C there is a unique circle on Q and touching C at P. We generalise to a Laguerre geometry where three pairwise non-collinear points lie on a constant number of circles. Examples and conditions on the parameters of a Laguerre geometry are given.
A generalized quadrangle (GQ) is a point, line geometry in which for a non-incident point, line pair (P,m) there exists a unique point on m collinear with P. In certain cases we construct a Laguerre geometry from a GQ and conversely. Using Laguerre geometries we show that a GQ of order (s,s^2) satisfying Property (G) at a pair of points is equivalent to a configuration of ovoids in three-dimensional projective space.
Download the article in PDF format (size 212 Kb)
| 2000 Mathematics Subject Classification:
primary 51E20, 51E12
|
| (Metadata: XML, RSS, BibTeX) |
References
-
A. Barlotti, ‘Un'estensione del teorema di Segre–Kustaanheimo’, Boll. Unione Mat. Ital. 10 (1955), 96–98.
MR75606
-
S. G. Barwick, M. R. Brown and T. Penttila, ‘Flock generalized quadrangles and tetradic sets of elliptic quadrics of \operatorname{PG}(3,q)\,’, J. Combin. Theory Ser. A 113 (2006), 273–290.
MR2199275
-
W. Benz, Vorlesung über Geometrie der Algebren, volume 197 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen (Springer, Berlin, 1937).
MR353137
-
R. C. Bose and S. S. Shrikhande, ‘Geometric and pseudo-geometric graphs (q^{2}+1,q+1,q)\,’, J. Geom. 2 (1972), 74–94.
MR302468
-
M. R. Brown, ‘Projective ovoids and generalized quadrangles’, Adv. Geom. 7 (2007), 65–81.
MR2290640
-
F. Buekenhout, ‘Le plans de benz: Une approach unifiée des plans de Moebius, Laguerre et Minkowski’, J. Geom. 17 (1981), 61–68.
MR647084
-
L. R. A. Casse, J. A. Thas and P. R. Wild, ‘(q^{n+1})-sets of \operatorname{PG}(3n-1,q), generalized quadrangles and Laguerre planes’, Bull. Belg. Math. Soc. Simon Stevin 59 (1985), 21–42.
MR795269
-
Y. Chen and G. Kaerlein, ‘Eine bemerkung über endliche Laguerre- und Minkowski-Ebenen’, Geom. Dedicata 2 (1973), 193–194.
MR407718
-
W. Cherowitzo, ‘Bill Cherowitzo's hyperoval page’, http://www-math.cudenver.edu/~wcherowi/research/hyperoval/hypero.html.
-
P. Dembowski, Finite Geometries (Springer, Berlin, 1968).
MR233275
-
W. M. Kantor, ‘Some generalized quadrangles with parameters (q^{2},q)\,’, Math. Z. 192 (1986), 45–50.
MR835389
-
R. Löwen, ‘Topological pseudo-ovals, elation Laguerre planes and elation generalized quadrangles’, Math. Z. 216 (1994), 347–369.
MR1283074
-
C. M. O'Keefe, ‘Ovoids in \operatorname{PG}(3,q): a survey’, Discrete Math. 151 (1996), 175–188.
MR1391265
-
G. Panella, ‘Caratterizzazione dell quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito’, Boll. Unione Mat. Ital. 10 (1955), 507–513.
MR75607
-
S. E. Payne, ‘A new infinite family of generalized quadrangles’, Congr. Numer. 49 (1985), 115–128.
MR830735
-
S. E. Payne, ‘An essay on skew translation generalized quadrangles’, Geom. Dedicata 32 (1989), 93–118.
MR1025204
-
S. E. Payne and J. A. Thas, ‘Generalized quadrangles with symmetry’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/76), 3–32.
MR419266
-
S. E. Payne and J. A. Thas, ‘Generalized quadrangles with symmetry. II’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/76), 81–103.
MR419267
-
S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, 110 (Pitman, Boston, MA, 1984).
MR767454
-
B. Segre, ‘Sulle ovali nei piani lineari finiti’, Atti. Accad. Naz. Lincei. Rendic 17 (1954), 141–142.
MR71035
-
B. Segre, ‘Ovals in a finite projective plane’, Canad. J. Math. 7 (1955), 414–416.
MR71034
-
B. Segre, ‘On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two’, Acta Arith. 5 (1959), 282–286.
MR114153
-
G. F. Steinke, ‘On the structure of finite elation Laguerre planes’, J. Geom. 41 (1991), 162–179.
MR1116911
-
J. A. Thas, ‘Generalized quadrangles and flocks of cones’, European J. Combin. 8 (1987), 441–452.
MR930180
-
J. A. Thas, ‘Generalized quadrangles of order (s,s^{2}) I’, J. Combin. Theory Ser. A 67 (1994), 140–160.
MR1284404
-
J. A. Thas, ‘Generalized polygons’, in: Handbook of Incidence Geometry (ed. F. Buenkenhout) (Elsevier, Amsterdam, 1995) chapter 9, 383–431.
MR1360724
-
J. A. Thas, ‘Generalized quadrangles of order (s,s^{2}), III’, J. Combin. Theory Ser. A 87 (1999), 247–272.
MR1704261
-
J. Tits, ‘Sur le trialité et certains groupes qui s'en déduisent’, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 14–60.
MR1557095
-
J. Tits, ‘Ovoïdes à translations’, Rendic. Mat. 21 (1962), 37–59.
MR143086
|