Abstract
For an open subset \Omega of the Euclidean space \mathbf {R}^n, a measurable non-singular transformation T:\Omega \to \Omega and a real-valued measurable function u on \mathbf {R}^n, we study the weighted composition operator uC_T : f \mapsto u \cdot (f \circ T) on the Orlicz–Sobolev space W^{1, \varphi }(\Omega ) consisting of those functions of the Orlicz space L^{\varphi }(\Omega ) whose distributional derivatives of the first order belong to L^{\varphi }(\Omega ). We also discuss a sufficient condition under which uC_T is compact.
Download the article in PDF format (size 96 Kb)
| 2000 Mathematics Subject Classification:
primary 47B33, 47B38; secondary 46E30, 46E35
|
| (Metadata: XML, RSS, BibTeX) |
| †indicates author for correspondence |
References
-
Robert A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
MR450957
-
S. C. Arora and M. Mukherjee, ‘Compact composition operators on Sobolev spaces’, Indian J. Math. 37 (1995), 207–219.
MR1458444
-
Y. Cui, H. Hudzik, Romesh Kumar and L. Maligranda, ‘Composition operators in Orlicz spaces’, J. Aust. Math. Soc. 76 (2004), 189–206.
MR2041244
-
Herbert Kamowitz and Dennis Wortman, ‘Compact weighted composition operators on Sobolev related spaces’, Rocky Mountain J. Math. 17 (1987), 767–782.
MR923745
-
B. S. Komal and Shally Gupta, ‘Composition operators on Orlicz spaces’, Indian J. Pure Appl. Math. 32 (2001), 1117–1122.
MR1846115
-
A. Kufner, O. John and S. Fucik, Function Spaces (Noordhoff International Publishing, Leyden, 1977).
MR482102
-
Romesh Kumar, ‘Composition operators on Orlicz spaces’, Integral Equations Operator Theory 29 (1997), 17–22.
MR1466857
-
Richard L. Wheeden and Antoni Zygmund, Measure and Integral (Marcel Dekker Inc., New York, 1977).
MR492146
|