Abstract
An element in a free group is a proper power if and only if it is a proper power in every nilpotent factor group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent group is a proper power.
Download the article in PDF format (size 84 Kb)
| 2000 Mathematics Subject Classification:
primary 20F18
|
| (Metadata: XML, RSS, BibTeX) |
References
-
G Baumslag, F. B. Cannonito, D. Robinson and D. Segal, ‘The algorithmic theory of polycyclic-by-finite groups’, J. Algebra 142 (1994), 118–149.
MR1125209
-
P. Hall, ‘Some sufficient condtions for a group to be nilpotent’, Illinois J. Math. 2 (1958), 787–801.
MR105441
-
A. G. Kurosh, The theory of groups, vol. 2 (Chelsea, New York, 1960).
MR109842
-
W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory (Wiley, New York, 1966).
MR0207802
-
S. Moran, ‘Errata and addenda to “A subgroup theorem for free nilpotent groups”’, Trans. Amer. Math. Soc. 112 (1964), 79–83.
MR170948
|