J. Aust. Math. Soc. 83 (2007), no. 1, pp. 79–86.

Multidimensional Hausdorff operators on the real Hardy space

A. K. Lerner E. Liflyand
Department of Mathematics
Bar-Ilan University
52900 Ramat-Gan
Israel
aklerner@netvision.net.il
Department of Mathematics
Bar-Ilan University
52900 Ramat-Gan
Israel
liflyand@macs.biu.ac.il
Received 27 October 2005; revised 25 April 2006
Communicated by G. Willis

Abstract

For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family is proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen and Móricz.

Download the article in PDF format (size 96 Kb)

2000 Mathematics Subject Classification: primary 47B38, 42B10; secondary 46E30
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2354??? Z'blatt-MATH: pre05231333
indicates author for correspondence

References

  1. K. F. Andersen, ‘Boundedness of Hausdorff operators on L^{p}(\mathbb{R}^{n}), H^{1}(\mathbb{R}^{n}), and \operatorname{BMO}(\mathbb{R}^{n})’, Acta Sci. Math. (Szeged) 69 (2003), 409–418. MR1991676
  2. G. Brown and F. Móricz, ‘The Hausdorff and the quasi Hausdorff operators on the spaces L^{p}, 1 ≤ p ≤ ∞’, Math. Inequal. Appl. 3 (2000), 105–115. MR1731919
  3. G. Brown and F. Móricz, ‘Multivariate Hausdorff operators on the spaces L^{p}({\mathbb{R}}^{n})’, J. Math. Anal. Appl. 271 (2002), 443–454. MR1923645
  4. R. R. Coifman and G. Weiss, ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83 (1977), 569–645. MR447954
  5. C. Fefferman and E. M. Stein, ‘H^{p} spaces of several variables’, Acta Math., 129 (1972), 137–193. MR447953
  6. R. Fefferman, Some recent developments in Fourier analysis and H^{P} theory and product domains. II Function spaces and applications Proc. US–Swed. Semin., Lund/Swed., Lect. Notes Math. 1302 (Springer-Verlag, Berlin Heidelberg, 1988) pp. 44–51. MR942256
  7. P. Galanopoulos and A. G. Siskakis, ‘Hausdorff matrices and composition operators’, Ill. J. Math. 45 (2001), 757–773. MR1879233
  8. C. Georgakis, ‘The Hausdorff mean of a Fourier–Stieltjes transform’, Proc. Amer. Math. Soc. 116 (1992), 465–471. MR1096210
  9. D. V. Giang and F. Móricz, ‘The Cesàro operator is bounded on the Hardy space H^{1}’, Acta Sci. Math. 61 (1995), 535–544. MR1377382
  10. D. V. Giang and F. Móricz, ‘The two dimensional Cesàro operator is bounded on the multi-parameter Hardy space H^{1} (\mathbb{R}\times\mathbb{R})’, Acta Sci. Math. 63 (1997), 279–288. MR1459792
  11. I. M. Glazman and Yu. I. Lyubich, Finite-Dimensional Linear Analysis: a Systematic Presentation in Problem Form (Nauka, Moscow, 1969 (Russian); English transl.: MIT Press, Cambridge, Massachusets, and London, England, 1974). MR354718
  12. G. H. Hardy, Divergent series (Clarendon Press, Oxford, 1949). MR30620
  13. E. Liflyand and F. Móricz, ‘The Hausdorff operator is bounded on the real Hardy space H^{1}({\mathbb{R}})’, Proc. Am. Math. Soc. 128 (2000), 1391–1396. MR1641140
  14. E. Liflyand and F. Móricz, ‘The multi-parameter Hausdorff operator is bounded on the product Hardy space H^{11}(\mathbb{R}\times\mathbb{R})’, Analysis 21 (2001), 107–118. MR1835373
  15. A. Miyachi, ‘Boundedness of the Cesàro operator in Hardy spaces’, J. Fourier Anal. Appl. 10 (2004), 83–92. MR2045526
  16. F. Móricz, ‘Multivariate Hausdorff operators on the spaces H^{1}({\mathbb{R}}^{n}) and \operatorname{BMO}({\mathbb{R}}^{n})’, Analysis Math. 31 (2005), 31–41. MR2145404
  17. A. G. Siskakis, ‘The Cesàro operator is bounded on H^{1}’, Proc. Amer. Math. Soc. 110 (1990), 461–462. MR1021904
  18. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals (Princeton Univ. Press, Princeton, NJ, 1993). MR1232192
  19. F. Weisz, ‘The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces’, Analysis 24 (2004), 183–195. MR2085955
  20. D. V. Widder, The Laplace transform (Princeton Univ. Press, Princeton, NJ, 1946). MR5923
Australian Mathematical Publishing Association Inc.

Valid XHTML 1.0 Transitional

Feedback