Abstract
We show that a warped product M_f=\mathbb {R}^n\times _f\mathbb {R} has higher rank and nonpositive curvature if and only if f is a convex solution of the Monge–Ampère equation. In this case we show that M contains a Euclidean factor.
Download the article in PDF format (size 72 Kb)
| 2000 Mathematics Subject Classification:
primary 53C21, 53C24; secondary 35J60
|
| (Metadata: XML, RSS, BibTeX) |
MathSciNet:
MR2354??? |
Z'blatt-MATH:
pre05231329 |
| †indicates author for correspondence |
References
-
W. Ballmann, ‘Nonpositively curved manifolds of higher rank’, Ann. of Math. 122 (1985), 597–609.
MR819559
-
W. Ballmann, M. Brin and P. Eberlein, ‘Structure of manifolds of nonpositive curvature I’, Ann. of Math. 122 (1985), 171–203.
MR799256
-
W. Ballmann, M. Brin and R. Spatzier, ‘Structure of manifolds of nonpositive curvature II’, Ann. of Math. 122 (1985), 205–235.
MR808219
-
J. Berndt and E. Samiou, ‘Rank rigidity, cones and curvature-homogeneous Hadamard manifolds’, Osaka J. Math. 39 (2002), 383–394.
MR1914319
-
E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of conullity two (World Scientific, Singapore, 1996).
MR1462887
-
K. Burns and R. Spatzier, ‘Manifolds of nonpositive curvature and their buildings’, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 35–59.
MR908215
-
C. E. Gutiérrez, The Monge-Ampère equation, Progr. in Nonlinear Differential Equations Appl., 44 (Birkhaüser Boston, Inc., Boston, MA, 2001).
MR1829162
-
O. Kowalski, F. Tricerri and L. Vanhecke, ‘Curvature-homogeneous riemannian manifolds’, J. Math. Pures Appl. 71 (1992), 471–501.
MR1193605
|