Abstract
In a Riemannian manifold M, elastica are solutions of the Euler–Lagrange equation of the following second order constrained variational problem: find a unit-speed curve in M, interpolating two given points with given initial and final (unit) velocities, of minimal average squared geodesic curvature. We study elastica in Lie groups G equipped with bi-invariant Riemannian metrics, focusing, with a view to applications in engineering and computer graphics, on the group \operatorname {SO}(3) of rotations of Euclidean 3-space. For compact G, we show that elastica extend to the whole real line. For G = \operatorname {SO}(3), we solve the Euler–Lagrange equation by quadratures.
Download the article in PDF format (size 324 Kb)
| 2000 Mathematics Subject Classification:
primary 49K99, 49Q99
|
| (Metadata: XML, RSS, BibTeX) |
MathSciNet:
MR2354??? |
Z'blatt-MATH:
1128.49019 |
| †indicates author for correspondence |
References
-
M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions : with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1965).
MR1225604
-
O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems (Cambridge University Press, Cambridge, 2003).
MR1995460
-
M. P. do Carmo, Riemannian Geometry (Birkhäuser Boston Inc., Boston, MA, 1992).
MR1138207
-
V. Jurdjevic, ‘Non-Euclidean elastica’, Amer. J. Math. 117 (1995), 93–124.
MR1314459
-
V. Jurdjevic, Geometric Control Theory (Cambridge University Press, Cambridge, NY, 1997).
MR1425878
-
J. Milnor, Morse Theory, Annals of Mathematics Studies No. 51 (Princeton University Press, Princeton, NJ, 1963).
MR163331
-
L. Noakes, ‘Null cubics and Lie quadratics’, J. Math. Phys. (3) 44 (2003), 1436–1448.
MR1958275
-
L. Noakes, ‘Non-null Lie quadratics in E^{3}’, J. Math. Phys. (11) 45 (2004), 4334–4351.
MR2098141
-
L. Noakes, ‘Duality and Riemannian cubics’, Adv. Comput. Math. (1–3) 25 (2006), 195–209.
MR2231701
-
L. Noakes, ‘Lax constraints in semisimple Lie groups’, Q. J. Math. (4) 57 (2006), 527–538.
MR2277599
-
L. Noakes, G. Heinzinger and B. Paden, ‘Cubic splines on curved spaces’, IMA J. Math. Control Inform. (4) 6 (1989), 465–473.
MR1036158
-
L. Noakes and T. Popiel, ‘Quadratures and cubics in SO(3) and SO(1,2)’, IMA J. Math. Control Inform. (4) 23 (2006), 477–488.
MR2271173
-
V. Varadarajan, Lie Groups, Lie Algebras, and their Representations (Springer-Verlag, New York, 1984).
MR746308
|