C*-ALGEBRAS ASSOCIATED WITH PRESENTATIONS OF SUBSHIFTS II. IDEAL STRUCTURE AND LAMBDA-GRA PH SUBSYSTEMS

KENGO MATSUMOTO

(Received 28 December 2004; revised 27 June 2005)

Communicated by G. Willis

Abstract

A \(\lambda\)-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1–30, the author constructed a C*-algebra \(\mathcal{O}_\Sigma\) associated with a \(\lambda\)-graph system \(\Sigma\) from a graph theoretic viewpoint. If a \(\lambda\)-graph system comes from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that there is a bijective correspondence between the lattice of all saturated hereditary subsets of \(\mathcal{O}_\Sigma\) and the lattice of all ideals of the algebra \(\mathcal{O}_\Sigma\), under a certain condition on \(\mathcal{O}_\Sigma\) called (II). As a result, the class of the C*-algebras associated with \(\lambda\)-graph systems under condition (II) is closed under quotients by its ideals.

1. Introduction

In [7], Cuntz and Krieger presented a class of C*-algebras associated with finite square matrices with entries in \(\{0, 1\}\). The C*-algebras are called Cuntz-Krieger algebras. They are simple if the matrices are irreducible with condition (I). Cuntz-Krieger observed that the C*-algebras have a close relationship to topological Markov shifts ([7]). The topological Markov shifts form a subclass of subshifts. For a finite set \(\Sigma\), a subshift \((\Lambda, \sigma)\) is a topological dynamical system defined by a closed shift-invariant subset \(\Lambda\) of the compact set \(\Sigma^\mathbb{Z}\) of all bi-infinite sequences of \(\Sigma\) with shift transformation \(\sigma\). In [21] (compare [25, 5]), the author generalized the class of the Cuntz-Krieger algebras to a class of C*-algebras associated with subshifts. He also
introduced several topological conjugacy invariants and presentations for subshifts by using K-theory and algebraic structure of the associated C^*-algebras with the subshifts in [23]. For presentation of subshifts, notions of the λ-graph system and symbolic matrix system have been introduced ([23]). They are generalizations of the λ-graph (labeled graph) and the symbolic matrix for sofic subshifts to general subshifts.

We henceforth denote by \mathbb{Z}_+ the set of all nonnegative integers. Let Σ be a finite set that is called an alphabet. A λ-graph system $\mathcal{L} = (V, E, \lambda, i)$ consists of a vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$, an edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l+1}$, a labeling map $\lambda : E \to \Sigma$ and a surjective map $i(= i_{l+1}) : V_{l+1} \to V_l$ for each $l \in \mathbb{Z}_+$ with a certain compatible condition, called the local property. Its matrix presentation $\mathcal{M}_{l+1, l}$ is called a symbolic matrix system, denoted by (\mathcal{M}, I). The λ-graph systems give rise to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of the λ-graph systems. Conversely, there is a canonical method to construct a λ-graph system from an arbitrary subshift [23]. It is called the canonical λ-graph system for subshift Λ.

In [24], the author constructed C^*-algebras from λ-graph systems and studied their structure. Let $\mathcal{L} = (V, E, \lambda, i)$ be a λ-graph system over alphabet Σ. Let $\{v^l_1, \ldots, v^l_{m(l)}\}$ be the set of the vertex V_l. We henceforth assume that a λ-graph system \mathcal{L} is left-resolving, that is, there are no distinct edges with the same label and the same terminal vertex. The C^*-algebra $\mathcal{O}_\mathcal{L}$ is realized as a universal unique C^*-algebra subject to certain operator relations among generating partial isometries S_α, corresponding to the symbols $\alpha \in \Sigma$ and projections E^l_i corresponding to the vertices $v^l_i \in V_l$, $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$, encoded by the concatenation rule of \mathcal{L}. Irreducibility and aperiodicity for finite directed graphs have been generalized to λ-graph systems in [24]. If \mathcal{L} satisfies condition (I), a condition generalizing condition (I) for finite square matrices defined by [7], and is irreducible, then the C^*-algebra $\mathcal{O}_\mathcal{L}$ is simple. In particular, if \mathcal{L} is aperiodic, then $\mathcal{O}_\mathcal{L}$ is simple and purely infinite ([24], compare [27]).

In this paper, we investigate ideal structures of the C^*-algebras $\mathcal{O}_\mathcal{L}$. The discussions are based on a line of Cuntz’s paper [6] in which the ideal structure of the Cuntz-Krieger algebras were studied (compare [13]). We generalize condition (II) for finite directed graphs, defined in [6], to λ-graph systems. By considering saturated hereditary subsets of \mathcal{L} with respect to arrows of edges, we show the following theorem.

THEOREM A (Proposition 3.5, Theorem 3.6). Suppose that \mathcal{L} satisfies condition (II). There is a bijective correspondence between the lattice of all saturated hereditary subsets of \mathcal{L} and the lattice of all ideals of the algebra $\mathcal{O}_\mathcal{L}$. Furthermore, for any ideal \mathcal{I} of $\mathcal{O}_\mathcal{L}$, the quotient C^*-algebra $\mathcal{O}_\mathcal{L}/\mathcal{I}$ is isomorphic to the C^*-algebra $\mathcal{O}_{\mathcal{L}/\mathcal{I}}$ associated with the λ-graph system \mathcal{L}/\mathcal{I}, obtained by removing the corresponding saturated hereditary subset $C_\mathcal{I}$ for \mathcal{I}.
Corollary B. In the λ-graph systems satisfying condition (II), the class of the C^*-algebras associated with λ-graph systems is closed under quotients by ideals.

By Corollary B, it is expected that rich examples of simple purely infinite nuclear C^*-algebras of this class live outside Cuntz-Krieger algebras (compare [24, Theorem 7.7], [16], [26] and [20]). We further study the structure of an ideal of O_C in Section 4. We prove that an ideal of O_C is stably isomorphic to the C^*-subalgebra of O_C associated with the corresponding saturated hereditary subset of V (Theorem 4.3). As a result, the K-theory formulae for ideals of O_C are presented in terms of the corresponding saturated hereditary subsets of V (Theorem 4.5).

If a λ-graph system \mathcal{L} comes from a finite directed graph G, the associated C^*-algebra O_C becomes a Cuntz-Krieger algebra O_{λ_C} for its adjacency matrix A_G with entries in $\{0, 1\}$. The results of this paper, Theorem A, Corollary B, Theorem 4.3, Theorem 4.5, and Proposition 4.6 are generalizations of Cuntz’s result [6, Theorem 2.5] for Cuntz-Krieger algebras. Other generalizations of Cuntz-Krieger algebras from this graph point of view have been studied by [2, 10, 12, 15, 17, 18, 30, 34] and [35]. Related discussions for C^*-algebras generated by Hilbert C^*-bimodules can be found in [14].

2. Review of the C^*-algebras associated with λ-graph systems

Recall that a λ-graph system $\mathcal{L} = (V, E, \lambda, \iota)$ over an alphabet Σ is a directed Bratteli diagram with vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$ and edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1}$ that is labeled with symbols in Σ by $\lambda : E \to \Sigma$, and that is supplied with surjective maps $\iota(= \iota_{l,l+1}) : V_{l+1} \to V_l$ for $l \in \mathbb{Z}_+$. Here, both the vertex sets V_l, $l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}$, $l \in \mathbb{Z}_+$ are finite disjoint sets. An edge e in $E_{l,l+1}$ has its source vertex $s(e)$ in V_l and its terminal vertex $t(e)$ in V_{l+1} respectively. Every vertex in V has a successor and every vertex in V_l for $l \in \mathbb{N}$ has a predecessor. It is required that there exists a bijective correspondence, which preserves labels, between $\{e \in E_{l,l+1} \mid t(e) = v, \iota(s(e)) = u\}$ and $\{e \in E_{l-1,l} \mid s(e) = u, t(e) = \iota(v)\}$ for all pairs of vertices $u \in V_{l-1}$ and $v \in V_{l+1}$. This property of the λ-graph systems is called the local property. We call an edge $e \in E_{l,l+1}$ a λ-edge and a connecting finite sequence of λ-edges a λ-path. For $u, v \in V$, if $\iota(v) = u$, we say that there exists an ι-edge from v to u. Similarly we use the term ι-path. We denote by $\{v'_1, v'_2, \ldots, v'_m\}$ the vertex set V_l of V at level l. A finite labeled graph (G, λ) over Σ yields a λ-graph system $\mathcal{L}_{(G,\lambda)}$ by setting $V_l = V_l$, $E_{l,l+1} = E$ for $l \in \mathbb{Z}_+$ and $\iota = \text{id}$ (compare [24, Section 7]).

Let us now briefly review the C^*-algebra O_C associated with the λ-graph system \mathcal{L}, which was originally constructed in [24] to be a groupoid C^*-algebra of a groupoid
of a continuous graph obtained by \(\mathcal{L} \) (compare \([8, 9, 31]\)). The \(C^* \)-algebras \(\mathcal{O}_\mathcal{L} \) are generalization of the \(C^* \)-algebras associated with subshifts. That is, if the \(\lambda \)-graph system is the canonical \(\lambda \)-graph system for a subshift \(\Lambda \), the constructed \(C^* \)-algebra coincides with the \(C^* \)-algebra \(\mathcal{O}_\Lambda \) associated with the subshift \(\Lambda \) in \([26]\) (compare \([5]\)).

Let \(\mathcal{L} = (V, E, \lambda, i) \) be a left-resolving \(\lambda \)-graph system over \(\Sigma \). We denote by \(\Lambda \) the presented subshift \(\Lambda_\mathcal{L} \) by \(\mathcal{L} \). We denote by \(\Lambda^\lambda \) the set of admissible words in \(\Lambda \) of length \(k \). We set \(\Lambda^\lambda = \bigcup_{k=0}^{\infty} \Lambda^k \), where \(\Lambda^0 \) denotes the empty word. Define the transition matrices \(A_{i,j+1}, I_{i,j+1} \) of \(\mathcal{L} \) by setting for \(i = 1, 2, \ldots, m(l), j = 1, 2, \ldots, m(l+1), \alpha \in \Sigma \),

\[
A_{i,j+1}(i, \alpha, j) = \begin{cases}
1 & \text{if } s(e) = v^i_j, \lambda(e) = \alpha, t(e) = v^{i+1}_j \text{ for some } e \in E_{i,j+1}, \\
0 & \text{otherwise},
\end{cases}
\]

\[
I_{i,j+1}(i, j) = \begin{cases}
1 & \text{if } i_{i,j+1}(v^{i+1}_j) = v^i_j, \\
0 & \text{otherwise}.
\end{cases}
\]

The \(C^* \)-algebra \(\mathcal{O}_\mathcal{L} \) is realized as the universal unital \(C^* \)-algebra generated by partial isometries \(S_\alpha, \alpha \in \Sigma \) and projections \(E_i^l, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+ \), subject to the following operator relations called \((\mathcal{L}) \)

\[
\sum_{\alpha \in \Sigma} S_\alpha S_\alpha^* = 1, \tag{2.1}
\]

\[
\sum_{i=1}^{m(l)} E_i^l = 1, \quad E_i^l = \sum_{j=1}^{m(l+1)} I_{i,j+1}(i, j) E_j^{i+1}, \tag{2.2}
\]

\[
S_\beta S_\beta^* E_i^l = E_i^l S_\beta S_\beta^*, \tag{2.3}
\]

\[
S_\beta^* E_i^l S_\beta = \sum_{j=1}^{m(l+1)} A_{i,j+1}(i, \beta, j) E_j^{i+1}, \tag{2.4}
\]

for \(\beta \in \Sigma, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+ \). It is nuclear ([24, Proposition 5.6]). The relations \((2.1), (2.3) \) and \((2.4) \) yield the relations

\[
E_i^l = \sum_{\alpha \in \Sigma} \sum_{j=1}^{m(l+1)} A_{i,j+1}(i, \alpha, j) S_\alpha E_j^{i+1} S_\alpha^*, \tag{2.5}
\]

for \(i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+ \). For a word \(\mu = \mu_1 \cdots \mu_k \in \Lambda^k \), we set \(S_\mu = S_{\mu_1} \cdots S_{\mu_k} \). Then the algebra of all finite linear combinations of the elements of the form \(S_\mu E_i^l S_\nu \), for \(\mu, \nu \in \Lambda^*, i = 1, \ldots, m(l), l \in \mathbb{Z}_+ \), is a dense \(*\)-subalgebra of \(\mathcal{O}_\mathcal{L} \).

We define three \(C^* \)-subalgebras \(\mathcal{F}_l^k \), \(\mathcal{F}_l^\infty \) and \(\mathcal{F}_l \) of \(\mathcal{O}_\mathcal{L} \). The first one, \(\mathcal{F}_l^k \), is generated by \(S_\mu E_i^l S_\nu \), \(\mu, \nu \in \Lambda^k, i = 1, \ldots, m(l) \), the second one, \(\mathcal{F}_l^\infty \), is
generated by \(\mathcal{F}_k^l, k \leq l, l \in \mathbb{Z}_+ \), and the third one, \(\mathcal{F}_E \), is generated by \(\mathcal{F}_k^\infty, k \in \mathbb{Z}_+ \). There exist two embeddings \(\iota_{l+1} : \mathcal{F}_k^l \hookrightarrow \mathcal{F}_k^{l+1} \), coming from the second relation of (2.2) and \(\lambda_{k,k+1} : \mathcal{F}_k^l \hookrightarrow \mathcal{F}_k^{l+1} \), coming from (2.5). The latter embeddings induce an embedding of \(\mathcal{F}_k^\infty \) into \(\mathcal{F}_{k+1}^\infty \) that we also denote by \(\lambda_{k,k+1} \). Since the algebra \(\mathcal{F}_k^l \) is finite dimensional, the embeddings \(\iota_{l+1} : \mathcal{F}_k^l \hookrightarrow \mathcal{F}_k^{l+1}, l \in \mathbb{N} \) yield the AF-algebra \(\mathcal{F}_k^\infty \), and the embeddings \(\lambda_{k,k+1} : \mathcal{F}_k^\infty \hookrightarrow \mathcal{F}_{k+1}^\infty, k \in \mathbb{N} \) yield the AF-algebra \(\mathcal{F}_E \).

For a vertex \(v_i \in V_l \), set

\[
\Gamma^+(v_i) = \left\{ (\alpha_1, \alpha_2, \ldots) \in \Sigma^\infty \mid \text{there exists an edge } e_{n,n+1} \in E_{n,n+1} \text{ for } n \geq l \text{ such that } v_i^l = s(e_{n,n+1}), t(e_{n,n+1}) = s(e_{n+1,n+2}), \lambda(e_{n,n+1}) = \alpha_{n-l+1} \right\},
\]

the set of all label sequences in \(\Sigma \) starting at \(v_i \). We say that \(\Sigma \) satisfies condition (I) if for each \(v_i \in V \), the set \(\Gamma^+(v_i) \) contains at least two distinct sequences. Under condition (I), the algebra \(\mathcal{O}_\Sigma \) can be realized as the unique C*-algebra subject to the relations (\(\Sigma \)). This means that if \(\hat{S}_\alpha, \alpha \in \Sigma \), and \(\hat{E}_i, i = 1, \ldots, m(l), l \in \mathbb{Z}_+ \), are another family of nonzero partial isometries and nonzero projections satisfying the relations (\(\Sigma \)), then the map \(\hat{S}_\alpha \to \hat{S}_\alpha, \hat{E}_i \to \hat{E}_i \) extends to an isomorphism from \(\mathcal{O}_\Sigma \) onto the C*-algebra \(\hat{\mathcal{O}}_\Sigma \) generated by \(\hat{S}_\alpha, \alpha \in \Sigma \), and \(\hat{E}_i, i = 1, \ldots, m(l), l \in \mathbb{Z}_+ \) ([24, Theorem 4.3]).

Let \(\mathcal{A}_\Sigma \) be the C*-subalgebra of \(\mathcal{O}_\Sigma \) generated by the projections \(E_i, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+ \). Let \(\Omega_\Sigma \) the projective limit of the system \(\iota_{l+1} : V_{l+1} \to V_l, l \in \mathbb{Z}_+ \). We endow \(\Omega_\Sigma \) with the projective limit topology so that it is a compact Hausdorff space. An element of \(\Omega_\Sigma \) is called an \(\iota \)-orbit. By the universality of the algebra \(\mathcal{O}_\Sigma \), the algebra \(\mathcal{A}_\Sigma \) is isomorphic to the commutative C*-algebra \(\mathcal{C}(\Omega_\Sigma) \) of all complex valued continuous functions on \(\Omega_\Sigma \). As a corollary of [24, Theorem 4.3], if \(\Sigma \) satisfies condition (I), for a nonzero ideal \(\mathcal{I} \) of \(\mathcal{O}_\Sigma \), we have \(\mathcal{I} \cap \mathcal{A}_\Sigma \neq \{0\} \).

A \(\lambda \)-graph system \(\Sigma \) is said to be irreducible if for a vertex \(v \in V \) and an \(\iota \)-orbit \(x = (x_t)_{t \in \mathbb{Z}_+} \in \Omega_\Sigma \), there exists a \(\lambda \)-path starting at \(v \) and terminating at \(x_{t+N} \) for some \(N \in \mathbb{N} \). Define a positive operator \(\lambda_\Sigma \) on \(\mathcal{A}_\Sigma \) by \(\lambda_\Sigma(X) = \sum_{\alpha \in \Sigma} S_\alpha X S_\alpha \) for \(X \in \mathcal{A}_\Sigma \). The operator \(\lambda_\Sigma \) on \(\mathcal{A}_\Sigma \) induces the embedding \(\mathcal{F}_k^\infty \subset \mathcal{F}_{k+1}^\infty, k \in \mathbb{N} \) so as to define the AF-algebra \(\mathcal{F}_\Sigma = \lim_{\leftarrow k} \mathcal{F}_k^\infty \). We say that \(\lambda_\Sigma \) is irreducible if there exists no non-trivial ideal of \(\mathcal{A}_\Sigma \) invariant under \(\lambda_\Sigma \). Then \(\Sigma \) is irreducible if and only if \(\lambda_\Sigma \) is irreducible. If \(\Sigma \) is irreducible with condition (I), the C*-algebra \(\mathcal{O}_\Sigma \) is simple ([24, Theorem 4.7], compare [27]).

3. Hereditary subsets of the vertices and ideals

This section and the next section are the main parts of this paper. In what follows we assume that a \(\lambda \)-graph system \(\Sigma = (V, E, \lambda, \iota) \) over \(\Sigma \) is left-resolving and satisfies
condition (I). We mean by an ideal of a C^*-algebra a closed two-sided ideal. Recall that the vertex set V_i is denoted by $\{v_i^j, \ldots, v_{m_i}^j\}$. For $v_i^j \in V_i$ and $v_{i+1}^{j+1} \in V_{i+1}$, we write $v_i^j \geq v_{i+1}^{j+1}$ if $u_{i+1}(v_{i+1}^{j+1}) = v_i^j$. We also write $v_i^j \geq v_{i+1}^{j+1}$ if there exists an edge $e \in E_{i+1}$ such that $s(e) = v_i^j, t(e) = v_{i+1}^{j+1}$. For $v_i^j \in V_i$ and $v_{i+k}^m \in V_{i+k}$, we write $v_i^j \geq v_{i+k}^m$ (respectively $v_i^j \geq v_{i+k}^m$) if there exist $v_{i+1}^{j+1}, \ldots, v_{i+k+1}^{j+k+1}$ such that $v_i^j \geq v_{i+1}^{j+1} \geq \cdots \geq v_{i+k+1}^{j+k+1} \geq v_{i+k}^m$ (respectively $v_i^j \geq v_{i+1}^{j+1} \geq \cdots \geq v_{i+k}^{j+k} \geq v_{i+k+1}^{j+k+1}$).

A subset C of V is said to be i-hereditary (respectively λ-hereditary) if for $v_i^j \in C \cap V_i$ the condition $v_i^j \geq v_{i+1}^{j+1}$ (respectively $v_i^j \geq v_{i+1}^{j+1}$) implies $v_{i+1}^{j+1} \in C$. It is said to be hereditary if C is both i-hereditary and λ-hereditary. It is said to be i-saturated (respectively λ-saturated) if it contains every vertex $v_i^j \in C \cap V_i$ for which $v_i^j \geq v_{i+1}^{j+1}$ (respectively $v_i^j \geq v_{i+1}^{j+1}$) implies $v_{i+1}^{j+1} \in C$. If C is both i-saturated and λ-saturated, it is said to be saturated.

Definition. A λ-graph system $\Sigma' = (V', E', \lambda', i')$ over Σ' is said to be a λ-graph subsystem of Σ if it satisfies the following conditions:

$$\emptyset \neq V'_i \subset V_i, \quad \emptyset \neq E'_{i+1} \subset E_{i+1}, \quad \text{for } i \in \mathbb{Z}_+,$$

$$\lambda|_{E'} = \lambda', \quad i|_{V'} = i', \quad \Sigma' \subset \Sigma,$$

and an edge $e \in E$ belongs to E' if and only if the both vertices $s(e), t(e)$ belong to V'. Hence a λ-graph subsystem is determined by only its vertex set.

Lemma 3.1. For a saturated hereditary subset $C \subset V$, set

$$V'^C = V \setminus C,$$

$$E'^C = \{e \in E \mid s(e), t(e) \in V \setminus C\},$$

$$\lambda'^C = \lambda|_{E'^C}, \quad i'^C = i|_{V'^C}.$$

Then $(V'^C, E'^C, \lambda'^C, i'^C)$ is a λ-graph subsystem over Σ of Σ.

Proof. For a vertex $u \in V'^C$, there exists a vertex $w \in V_{i+1}^C$ such that $i(w) = u$, because C is i-saturated. Similarly, there exist an edge $e \in E_{i+1}$ and a vertex $w' \in V_{i+1}^C$ such that $s(e) = u, t(e) = w'$, because C is λ-saturated. Let u, v be vertices with $u \in V_i^C, v \in V_{i+2}$, and $w \geq v' = i(u)$. As C is i-hereditary, we have that v belongs to V_{i+1}^C. As C is λ-hereditary, if an edge $e \in E_{i+1}$ satisfies $t(e) = v$, one sees that $s(e)$ belongs to V_{i+1}^C and hence e belongs to E_{i+1}^C. Therefore $(V'^C, E'^C, \lambda'^C, i'^C)$ inherits the local property of Σ. Thus $(V'^C, E'^C, \lambda'^C, i'^C)$ becomes a λ-graph system. \qed
We denote by $\mathcal{L}^{\lambda C}$ the λ-graph system $(V^{\lambda C}, E^{\lambda C}, \lambda^{\lambda C}, \iota^{\lambda C})$ and call it the λ-graph subsystem of \mathcal{L} removed by removing C. Let \mathcal{I}_C be the closed ideal of O_C generated by the projections E^i_j for $v^i_j \in C$, that is, $\mathcal{I}_C = O_C(E^i_j \mid v^i_j \in C)O_C$ the closure of $O_C\{E^i_j \mid v^i_j \in C\}O_C$.

Lemma 3.2. The set of all linear combinations of elements of the form

$$S_{i}E^m_jS^*_n, \quad \text{for } v^i_j \in C, \mu, \nu \in \Lambda^*$$

is dense in \mathcal{I}_C.

Proof. Since the finite linear combinations of elements of the form $S_i E^m_j S^*_n$ for $|\xi|, |\eta| \leq p, f = 1, \ldots, m(p)$ is dense in O_C, elements of the form

$$S_i E^m_j S^*_n, \quad \text{for } v^i_j \in C, |\xi|, |\eta| \leq p, |\xi|, |\eta| \leq q$$

span the ideal \mathcal{I}_C. Put $T = S_i E^m_j S^*_n E^p_j S^*_p E^p_j S^*_p$ and assume $T \neq 0$. The equality

$$S^*_n E^m_j S^*_n = \sum_{j=1}^{m(p)l+i} A_{l,j+i} (i, \eta, j) E^l_{i+j+\eta}$$

holds, where $A_{l,j+i}(i, \eta, j) = 1$, if there exists a λ-path from v^i_j to $v^j_{i+\eta}$ with label η, otherwise $A_{l,j+i}(i, \eta, j) = 0$. The vertex v^i_j belongs to C if $A_{l,j+i}(i, \eta, j) = 1$, because $v^i_j \in C$ and C is λ-hereditary. As $T = S_i E^m_j S^*_n E^p_j S^*_p E^p_j S^*_p$ and we may assume that l is large enough, T is assumed to be of the form $T = S_i E^m_j S^*_n E^p_j S^*_p$ for $v^i_j \in C$. As $T \neq 0$, the element $E^m_j S^*_n S^*_n$ is either of the form $E^m_j S^*_n$, or $E^m_j S^*_n$ for some word v. In the former case, we have $T = S_i S^*_n E^m_j S^*_n$. Since $S^*_n E^m_j S^*_n$ is a finite linear combination of $E^m_j S^*_n$ for $v^i_j \in C$ and l is large enough, T is a finite linear combination of elements of the form (3.1), because C is λ-hereditary. In the latter case, we have $T = S_i S^*_n E^m_j S^*_n S^*_p S^*_p$. Since $S^*_n E^m_j S^*_n$ is a finite linear combination of $E^m_j S^*_n$ for $v^i_j \in C$ and l is large enough, we have $T = S_i E^m_j S^*_n$. Hence we get the desired assertion.

Lemma 3.3. If E^i_j belongs to the ideal \mathcal{I}_C, the vertex v^i_j belongs to the set C.

Proof. For $k \leq l$, set

$$E_{k,l} = \sum_{|\mu|=k, |\nu|=l} S_{\mu}E^\mu_j S^*_\nu$$

belonging to \mathcal{I}_C. For an operator $T = S_i E^m_j S^*_n$ with $v^i_j \in C$, it follows that $TE_{k,l} = E^m_j T = T$ for large enough k, l. Lemma 3.2 says that $\{E_{k,l}\}_{k,l}$ is an approximate unit.
for \(T_\mathcal{I} \). Suppose that a vertex \(v_l^j \in V \) does not belong to \(C \). It suffices to show that the equality

\[
\| E^l_k E_{l,l} - E^l_k \| = 1
\]

holds for all large enough \(k, l \). We fix \(k \leq l \) large enough. We may assume that \(E^l_k E_{l,l} \neq 0 \) and \(L + k \leq l \). There exists an admissible word \(\mu \) of length \(k \) such that \(S^*_\mu E^l_k S_\mu E^l_k \neq 0 \) and hence \(S^*_\mu E^l_k S_\mu \geq E^l_k \). On the other hand, \(C \) is saturated, so we may find a \(\lambda \)-path \(\pi \) in \(E_{i,l+l} \) whose source vertex \(s(\pi) \) is \(v_l^j \), and an \(c \)-path from the terminal vertex \(t(\pi) \) of \(\pi \) to a vertex \(v_p^j \) that does not belong to \(C \). We set \(\gamma = \lambda(\pi) \) the label of \(\pi \) so that \(S^*_\gamma E^l_k S_\gamma \geq E^l_k \). It then follows that

\[
E^l_k \geq S_\gamma S^*_\gamma E^l_k S_\gamma + S_\gamma S^*_\gamma E^l_k S_\gamma S_\gamma E^l_k S^*_\gamma \geq S_\gamma E^l_k S^*_\gamma + S_\gamma E^l_k S^*_\gamma.
\]

Since \(\sum_{|l|=k,v^j \in \cal{C}} S_l E^l_k S^*_l \) is orthogonal to \(S_\gamma E^l_k S^*_\gamma \), one obtains that

\[
E^l_k E_{l,l} - E^l_k \geq S_\gamma E^l_k S^*_\gamma
\]

so that (3.2) holds.

Lemma 3.4. For any nonzero closed ideal \(\mathcal{I} \) of the \(C^* \)-algebra \(\mathcal{O}_\Sigma \), put

\[
C_\mathcal{I} = \{ v^j_l \in V \mid E^l_k \in \mathcal{I} \}.
\]

Then \(C_\mathcal{I} \) is a nonempty saturated hereditary subset of \(V \).

Proof. Since \(\Sigma \) satisfies condition (I), the set \(C_\mathcal{I} \) is nonempty because of the uniqueness of the algebra \(\mathcal{O}_\Sigma \). Take \(v^j_l \in C_\mathcal{I} \). Suppose that \(v^{j+1} \) satisfies \(v^j_l \geq v^{j+1}_l \). The inequality \(E^l_k \geq E^{l+1}_k \) assures \(E^{l+1}_k \in \mathcal{I} \). Suppose next \(v^j_l \geq v^{j+1}_l \). There exists a symbol \(\alpha \in \Sigma \) such that \(A_{i,j+1}(i, \alpha, j) = 1 \). By (2.4), we have \(S^*_\alpha E^l_k S_\alpha \geq E^{l+1}_k \) so that \(E^{l+1}_k \in \mathcal{I} \). Hence \(C_\mathcal{I} \) is hereditary. For \(\delta \), suppose that \(v^j_l \geq v^{j+1}_l \) implies \(v^{j+1}_l \in C_\mathcal{I} \). This means that \(A_{i,j+1}(i, \alpha, j) = 1 \) implies \(E^{l+1}_k \in \mathcal{I} \). By the second equality of (2.2), we see \(E^l_k \in \mathcal{I} \). Suppose next that \(v^j_l \geq v^{j+1}_l \) implies \(v^{j+1}_l \in C_\mathcal{I} \). This means that \(A_{i,j+1}(i, \alpha, j) = 1 \) implies \(E^{l+1}_k \in \mathcal{I} \). By (2.4), we have \(S^*_\alpha E^l_k S_\alpha \in \mathcal{I} \) for all \(\alpha \in \Sigma \), so that \(E^l_k = \sum_{\alpha \in \Sigma} S^*_\alpha E^l_k S_\alpha \) belongs to \(\mathcal{I} \). Thus \(\mathcal{I} \) is saturated.

Proposition 3.5. Let \(\Sigma = (V, E, \lambda, t) \) be a \(\lambda \)-graph system satisfying condition (I).

Let \(C \) be a saturated hereditary subset of \(V \). A vertex \(v^j_l \) belongs to \(C \) if and only if \(E^l_k \) belongs to \(T_\mathcal{I} \). Hence there exists a bijective correspondence between the set of all saturated hereditary subsets of \(V \) and the set of all ideals in \(\mathcal{O}_\Sigma \).

Proof. Let \(C \) be a saturated hereditary subset of \(V \). For a vertex \(v^j_l \in V \), we have \(v^j_l \in C \) if and only if \(E^l_k \in \mathcal{I} \) by Lemma 3.3. For an ideal \(\mathcal{I} \) of \(\mathcal{O}_\Sigma \), we have \(E^l_k \in \mathcal{I} \) if and only if \(v^j_l \in C_\mathcal{I} \) by definition of \(C_\mathcal{I} \). Hence we conclude the assertions.
DEFINITION. A λ-graph system \mathcal{L} satisfies condition (II) if for every saturated hereditary subset $C \subset V$, the λ-graph system \mathcal{L}^C satisfies condition (I).

Let A be an $n \times n$ square matrix with entries in $\{0, 1\}$. Then A satisfies condition (II) in the sense of Cuntz [6] if and only if the natural λ-graph system $O^A_\mathcal{L}$ constructed from A satisfies condition (II) in the above sense (compare Section 5).

THEOREM 3.6. Suppose that a λ-graph system \mathcal{L} satisfies condition (II). For an ideal I of $O^A_\mathcal{L}$, the quotient C^*-algebra $O^A_\mathcal{L}/I$ is isomorphic to the C^*-algebra $O^A_\mathcal{L}/C^I$ associated with the λ-graph system \mathcal{L}^C obtained from \mathcal{L} by removing the saturated hereditary subset C_I for I.

PROOF. We denote by S_{α}, E_{α}' the quotient images of S_{α}, E_{α}' in the quotient C^*-algebra $O^A_\mathcal{L}/I$ respectively. Let s_{α}, e_{α}' be the canonical generating partial isometries for $\alpha \in \Sigma$ and the projections corresponding to the vertices v_{α}' of V^C in $O^A_\mathcal{L}/C^I$. Since we have $E_{\alpha}' \neq 0$ if and only if $v_{\alpha}' \in V^C$, the relations
\[
\overline{S_{\alpha}' E_{\alpha}'} = \sum_{k=1}^{m(I+1)} A_{\alpha,i,k} E_{\alpha}' E_{\alpha}''', \quad \text{for $\alpha \in \Sigma$}
\]
hold. By the uniqueness of the algebras $O^A_\mathcal{L}$ and $O^A_\mathcal{L}/I$, subject to the operator relations, the correspondence $S_{\alpha} \leftrightarrow s_{\alpha}, E_{\alpha}' \leftrightarrow e_{\alpha}'$ for $\alpha \in \Sigma$, $v_{\alpha}' \in V^C$ extends to an isomorphism between $O^A_\mathcal{L}/I$ and $O^A_\mathcal{L}/C^I$.

COROLLARY 3.7. In the λ-graph systems satisfying condition (II), the class of the C^*-algebras associated with λ-graph systems is closed under quotients by its ideals.

We say a closed ideal J of $A_\mathcal{L}$ to be saturated if $\lambda_{\mathcal{L}}(E_{\alpha}') \in J$ implies $E_{\alpha}' \in J$. We are assuming that a λ-graph system \mathcal{L} satisfies condition (I).

LEMMMA 3.8. For an ideal I of $A_\mathcal{L}$, set $J = I \cap A_\mathcal{L}$. Then J is a nonzero $\lambda_\mathcal{L}$-invariant saturated ideal of $A_\mathcal{L}$.

PROOF. It suffices to show that J is saturated. Suppose that $\lambda_{\mathcal{L}}(E_{\alpha}') \in J$. We see $S_{\alpha}' E_{\alpha} S_{\alpha}$ belongs to J for each $\alpha \in \Sigma$. Hence $E_{\alpha}' = \sum_{\alpha \in \Sigma} S_{\alpha}' E_{\alpha} S_{\alpha}'$ belongs to J.

LEMMMA 3.9. There exists a bijective correspondence between the set of $\lambda_{\mathcal{L}}$-invariant closed saturated ideals of $A_\mathcal{L}$ and the set of saturated hereditary subsets of V.

PROOF. Let J be a $\lambda_{\mathcal{L}}$-invariant saturated ideal of $A_\mathcal{L}$. Put $C_J = \{ v_{\alpha}' \in V \mid E_{\alpha}' \in J \}$. As J is $\lambda_{\mathcal{L}}$-invariant, we have $\sum_{\alpha \in \Sigma} S_{\alpha}' E_{\alpha} S_{\alpha}$ belongs to J for $v_{\alpha}' \in C_J$. Hence
Theorem 3.10. Consider the following six conditions.

(i) \mathcal{O}_E is simple.
(ii) There is no nontrivial λ_E-invariant saturated ideal of \mathcal{A}_E.
(iii) There is no proper saturated hereditary subset of V.
(iv) \mathcal{L} is irreducible.
(v) There is no nontrivial λ_E-invariant ideal of \mathcal{A}_E.
(vi) There is no proper hereditary and ι-saturated subset of V.

Conditions (i)–(iii) are equivalent to each other, and also conditions (iv)–(vi) are equivalent to each other. The latter conditions imply the former conditions.

Proof. As nontrivial ideals of \mathcal{O}_E bijectively correspond to saturated hereditary subsets of V, the first three conditions are equivalent each other. It suffices to show that (iv) is equivalent to (vi). Assume that \mathcal{L} is irreducible. Let C be a nonempty hereditary and ι-saturated subset of V. Take a vertex $v_i^l \in C$. Let $U_N(v_i^l)$ be the set of ι-orbits $u = (u_n)_{n \in \mathbb{Z}_+} \in \Omega_E$ such that there exists a λ-path of length N from v_i^l to the vertex u_{i+N}. Since \mathcal{L} is irreducible, we have $\Omega_E = \bigcup_{N=0}^{\infty} U_N(v_i^l)$. Hence there exist N_1, N_2, \ldots, N_k such that $\Omega_E = \bigcup_{j=1}^{k} U_N(v_i^l)$, because $U_N(v_i^l)$ is open in Ω_E. We may assume that $0 \leq N_1 \leq N_2 \leq \cdots \leq N_k$. We put $N_k = L$. For a vertex $w \in V_{i+L}$, find an ι-orbit $x = (x_n)_{n \in \mathbb{Z}_+} \in \Omega_E$ such that $x_{i+L} = w$. Take N_k such that $x \in U_{N_k}(v_i^l)$. Since C is λ-hereditary and ι-saturated, we see $x_{i+N_k} \in C$ and hence $w \in C$. This implies $V_{i+N_k} \subset C$. Now C is ι-saturated, so we conclude that $V = C$. Therefore we get the implication from (iv) to (vi).

Suppose that \mathcal{L} is not irreducible. There exists an ι-orbit $u = (u_n)_{n \in \mathbb{Z}_+} \in \Omega_E$ and a vertex v_i^l such that u does not belong to $\bigcup_{N=0}^{\infty} U_N(v_i^l)$. Let $V^N(v_i^l)$ be the set of all vertices w in V_{i+N} that are terminal vertices of λ-edges whose source vertices are v_i^l. Put $V(v_i^l) = \bigcup_{N=0}^{\infty} V^N(v_i^l)$ and $W(v_i^l) = \{ w \in V \mid v_i^l \leq w \text{ for some vertex } v \in V(v_i^l) \} \cup V(v_i^l)$.

By the local property of the λ-graph system, the set $W(v_j^i)$ is λ-hereditary and the vertices u_n do not belong to $W(v_j^i)$ for all $n \in \mathbb{Z}_+$. It is by definition that $W(v_j^i)$ is ι-hereditary. Let C be the saturation of $W(v_j^i)$ with respect to \geq. As $W(v_j^i)$ is λ-hereditary, C is so from the local property of λ-graph system. It is obvious that C is ι-hereditary. We obtain a proper hereditary and ι-saturated subset C of V. □

4. Structure of ideals

In this section, we prove that an ideal of $O_\mathcal{C}$ is stably isomorphic to the C^*-subalgebra of $O_\mathcal{C}$ associated with the corresponding saturated hereditary subset of V. As a result, we can present the K-theory formulae for ideals of $O_\mathcal{C}$ in terms of the corresponding saturated hereditary subsets of V. The notation is as in the previous sections. For a saturated hereditary subset C of V, put for $v_j^i \in C$

$$\Lambda^C(v_j^i) = \left\{ \mu \in \Lambda^* \left| \begin{array}{l}
\text{there exists a } \lambda\text{-path } \pi \text{ such that } \lambda(\pi) = \mu.
\end{array} \right. \right\},$$

where $s(\pi)$ and $t(\pi)$ are the source vertex and the terminal vertex of π respectively. We denote by $O_\mathcal{C}(C)$ the C^*-subalgebra of $O_\mathcal{C}$ generated by elements of the form $S_{\mu}E_j^iS_\nu^j$, for $\mu, \nu \in \Lambda^C(v_j^i)$, $v_j^i \in C$.

Lemma 4.1. The set of all finite linear combinations of elements of the form $S_{\mu}E_j^iS_\nu^j$, for $\mu, \nu \in \Lambda^C(v_j^i)$, $v_j^i \in C$, is a dense $*$-subalgebra of $O_\mathcal{C}(C)$.

Proof. For $v_j^i, v_j^k \in C$, $\mu, \nu \in \Lambda^C(v_j^i)$, $\xi, \eta \in \Lambda^C(v_j^k)$, suppose that

$$S_{\mu}E_j^iS_\nu^jS_t^iE_j^kS_\eta^j \neq 0.$$

We may assume $|\nu| > |\xi|$. We then have $\nu = \xi\nu'$ for some ν', so that

$$S_{\mu}E_j^iS_\nu^jS_t^iE_j^kS_\eta^j = S_{\mu}E_j^iS_\xi^jS_t^iE_j^kS_\eta^j.$$

If $|\nu'| + k < l$, we have that $E_j^iS_\xi^jS_t^iE_j^kS_\eta^j = E_j^l$. If $|\nu'| + k \geq l$, we see that $E_j^iS_\xi^jS_t^iE_j^kS_\eta^j$ is a finite sum of projections $E_j^{\nu'|k}$ with $v_j^{\nu'|k} \in C$. In both cases, $S_{\mu}E_j^iS_\xi^jS_t^iE_j^kS_\eta^j$ is a finite linear combination of $S_\xi^jE_\delta^mS_\eta^j$ with $\xi, \delta \in \Lambda^C(v_j^m)$, $v_j^m \in C$. □

We prove that the ideal I_C of $O_\mathcal{C}$ is stably isomorphic to the C^*-algebra $O_\mathcal{C}(C)$ under some condition. Put $P_l = \sum_{i, v_j^i \in C} E_j^i$ for $l \in \mathbb{N}$. It belongs to the algebra $O_\mathcal{C}(C)$ and satisfies $P_l \leq P_{l+1}$. We see then a sequence of natural embeddings $P_lO_\mathcal{C}P_l \subset P_{l+1}O_\mathcal{C}P_{l+1} \subset \cdots$.

Proposition 4.2. $O_\mathcal{C}(C) = \lim_{l \to \infty} P_lO_\mathcal{C}P_l$.
PROOF. We first prove the inclusion relation $\mathcal{O}_C(C) \subset \lim_{n \to \infty} P_l \mathcal{O}_C P_l$. For $v^l_i \in C$ and $\mu \in \Lambda^C(v^l_i)$, take a λ-path π such that $s(\pi) \in C$, $t(\pi) = v^l_i$, and $\lambda(\pi) = \mu$. We put $s(\pi) = v^l_i$. The projection E^l_i satisfies the inequality $S^l_i E^l_i S^l_i \geq E^l_i$ so that $E^l_i S^l_i E^l_i = S^l_i E^l_i$. As \mathcal{L} is left-resolving, we know that $S^l_i E^l_i S^l_i = 0$ for $k_1 \neq j_1$. It then follows that $P_l S^l_i E^l_i = S^l_i E^l_i$. Symmetrically we have that $E^l_i S^l_l P_l = E^l_l S^l_l$ for some l_2. Hence we see that $P_l S^l_i E^l_i S^l_l P_l = S^l_i E^l_i S^l_l$. Thus we have proved that for $v^l_i \in C$ and $\mu, v \in \Lambda^C(v^l_i)$, there exists $M \in \mathbb{N}$ such that $P_m S^l_i E^l_i S^l_l = S^l_i E^l_l S^l_m$ for all $m \geq M$. This implies the inclusion relation $\mathcal{O}_C(C) \subset \lim_{n \to \infty} P_l \mathcal{O}_C P_l$.

For $v^l_i \in V$, $\mu, v \in \Lambda^*$, and $v^l_i, v^l_i \in C$, we next prove that the element $E^l_i S^l_j E^l_i S^l_j E^l_i$ belongs to the algebra $\mathcal{O}_C(C)$. We may assume that l is large enough because of the second relation of (2.2). Assume $S^l_i E^l_i S^l_j E^l_i S^l_j \neq 0$ so that $S^l_i E^l_i S^l_j \geq E^l_i$. Hence there exists a λ-path whose source is v^l_i and terminal is connected to v^l_i by an ι-path. By the local property of the λ-graph system, we may find a λ-path π in E such that $\lambda(\pi) = \mu$, $t(\pi) = v^l_i$ and an ι-path that connects between $s(\pi)$ and v^l_i. Since v^l_i belongs to C and C is hereditary, we see that $v^l_i \in C$ and μ belongs to $\Lambda^C(v^l_i)$. Symmetrically one sees that v belongs to $\Lambda^C(v^l_i)$ from the inequality $S^l_i E^l_i S^l_j \geq E^l_i$. Hence we have $E^l_i S^l_i E^l_i S^l_j E^l_i = S^l_i E^l_i S^l_j$ and it belongs to the algebra $\mathcal{O}_C(C)$. Thus we have $\lim_{n \to \infty} P_l \mathcal{O}_C P_l \subset \mathcal{O}_C(C)$. □

Theorem 4.3. The ideal \mathcal{I}_C is stably isomorphic to the algebra $\mathcal{O}_C(C)$.

PROOF. Let $X_l = \mathcal{O}_C P_l$ for $l \in \mathbb{N}$. Then X_l has a Hilbert left $\mathcal{O}_C P_l \mathcal{O}_C$-module and a Hilbert right $\mathcal{O}_C P_l \mathcal{O}_C$-module structure in a natural way. Its left $\mathcal{O}_C P_l \mathcal{O}_C$-valued inner product and right $\mathcal{O}_C P_l \mathcal{O}_C$-valued inner product are given by

$$\langle a P_l, b P_l \rangle_L = a P_l b^*, \quad \langle a P_l, b P_l \rangle_R = P_l a^* b P_l,$$

for $a, b \in \mathcal{O}_C$ respectively. Hence the norms on X_l coming from their respect inner products coincide with the norm on the C^*-algebra \mathcal{O}_C. As $P_l \leq P_{l+1}$, we have a natural embedding $X_l \hookrightarrow X_{l+1}$. Let X_C be the closure of $\bigcup_{l = 1}^{\infty} X_l$ in the norm of \mathcal{O}_C, that is regarded as the inductive limit of the inclusions $X_l \hookrightarrow X_{l+1}$, $l \in \mathbb{N}$. The ideal \mathcal{I}_C and the algebra $\mathcal{O}_C(C)$ are the inductive limits $\lim_{\to \infty} \mathcal{O}_C P_l \mathcal{O}_C$ and $\lim_{\to \infty} \mathcal{O}_C P_l \mathcal{O}_C$ respectively. We then see that the subspace X_C of \mathcal{O}_C has an induced left \mathcal{I}_C-valued inner product and right $\mathcal{O}_C(C)$-valued inner product such as

$$\langle \xi, \eta \rangle_L = \xi^* \eta \in \mathcal{I}_C, \quad \langle \xi, \eta \rangle_R = \xi^* \eta \in \mathcal{O}_C(C),$$

for $\xi, \eta \in X_C$ respectively. It also has a natural left \mathcal{I}_C-module and right $\mathcal{O}_C(C)$-module structures respectively. It is easy to see that both the linear spans of $\langle \xi, \eta \rangle_L$, for $\xi, \eta \in X_C$, and $\langle \xi, \eta \rangle_R$, for $\xi, \eta \in X_C$, are dense in \mathcal{I}_C and $\mathcal{O}_C(C)$ respectively. Hence X_C is a full Hilbert left \mathcal{I}_C-module, and a full Hilbert right $\mathcal{O}_C(C)$-module such
that \((\xi, \eta)_{\mathbb{R}} = \xi(\eta, \zeta)_{\mathbb{R}}\) for \(\xi, \eta, \zeta \in \mathcal{X}_C\). This means that \(\mathcal{X}_C\) is an \(\mathcal{I}_C\) - \(\mathcal{O}_\mathbb{R}(C)\) imprimitivity bimodule, so that \(\mathcal{I}_C\) and \(\mathcal{O}_\mathbb{R}(C)\) are Morita equivalent ([32]). By [4], they are stably isomorphic to each other.

By using the above result, we next compute the K-theory of the ideal \(\mathcal{I}_C\). The subalgebra \(\mathcal{O}_\mathbb{R}(C)\) is invariant globally under the gauge action \(\alpha_\mathbb{R}\) on \(\mathcal{O}_\mathbb{R}\). We still denote by \(\alpha_\mathbb{R}\) the restriction of \(\alpha_\mathbb{R}\) to \(\mathcal{O}_\mathbb{R}(C)\). We denote by \(\mathcal{F}_\mathbb{R}(C)\) the \(\mathcal{C}^*\)-subalgebra of \(\mathcal{O}_\mathbb{R}(C)\) generated by \(S_{\mu}E_i^jS_{\mu}^*\), \(\mu, v \in \Lambda^\mathbb{C}(v'_i), |\mu| = |v|, v'_i \in \mathbb{C}_+\). That is, \(\mathcal{F}_\mathbb{R}(C) = \mathcal{F}_\mathbb{R} \cap \mathcal{I}_C\). It is direct to see that the fixed point algebra \(\mathcal{O}_\mathbb{R}(C)^{\alpha_\mathbb{R}}\) of \(\mathcal{O}_\mathbb{R}(C)\) under \(\alpha_\mathbb{R}\) is the algebra \(\mathcal{F}_\mathbb{R}(C)\). A similar discussion to [22] (compare [24]) assures that the crossed product \(\mathcal{O}_\mathbb{R}(C) \rtimes_{\alpha_\mathbb{R}} \mathbb{T}\) is stably isomorphic to \(\mathcal{F}_\mathbb{R}(C)\). We can show the following result.

Lemma 4.4 (compare [24, Lemma 7.5], [22, Lemma 4.3]).

(i) \(K_0(\mathcal{O}_\mathbb{R}(C)) \cong K_0(\mathcal{O}_\mathbb{R}(C) \rtimes_{\alpha_\mathbb{R}} \mathbb{T})/(id - \alpha_\mathbb{R}^{-1})K_0(\mathcal{O}_\mathbb{R}(C) \rtimes_{\alpha_\mathbb{R}} \mathbb{T})\).

(ii) \(K_1(\mathcal{O}_\mathbb{R}(C)) \cong \text{Ker}(id - \alpha_\mathbb{R}^{-1})\text{ on } K_0(\mathcal{O}_\mathbb{R}(C) \rtimes_{\alpha_\mathbb{R}} \mathbb{T})\),
where \(\alpha_\mathbb{R}\) is the dual action of \(\alpha_\mathbb{R}\).

Let \(\mathcal{F}_k(C)\) be the \(\mathcal{C}^*\)-subalgebra of \(\mathcal{F}_\mathbb{R}(C)\) generated by \(S_{\mu}E_i^jS_{\mu}^*, \mu, v \in \Lambda^\mathbb{C}(v'_i), |\mu| = |v| = k, v'_i \in \mathcal{C} \cap \mathcal{V}_l\) and \(\mathcal{F}_k^\infty(C)\) the \(\mathcal{C}^*\)-subalgebra of \(\mathcal{F}_\mathbb{R}(C)\) generated by \(\mathcal{F}_k^l(C), k \leq l \in \mathbb{N}\). Hence we see that

\[\mathcal{F}_k^l(C) = \mathcal{F}_k \cap \mathcal{O}_\mathbb{R}(C), \quad \mathcal{F}_k^\infty(C) = \mathcal{F}_k^\infty \cap \mathcal{O}_\mathbb{R}(C)\]

The embeddings of \(\iota_{l,l+1} : \mathcal{F}_k^l \hookrightarrow \mathcal{F}_k^{l+1}\) and \(\lambda_{k,k+1} : \mathcal{F}_k^\infty \hookrightarrow \mathcal{F}_{k+1}^\infty\) of the original AF-algebra \(\mathcal{F}_\mathbb{R}\), are inherited in the algebras \(\mathcal{F}_k^l(C), \mathcal{F}_k^\infty(C), \mathcal{F}_\mathbb{R}(C)\), so that \(\mathcal{F}_\mathbb{R}(C)\) is an AF-algebra. Let \(m_\mathbb{C}(l)\) be the cardinal number of the vertex set \(\mathcal{C} \cap \mathcal{V}_l\). We put \(\mathcal{C} \cap \mathcal{V}_l = \{u_l^j, u_l^{j+1}, \ldots, u_{m_\mathbb{C}(l)}^j\}\). Define the following matrices:

\[A(C)_{l,l+1}(i, j, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = u_l^j, t(e) = \alpha, \text{ for some } e \in E_{l,l+1}^i, \\ 0 & \text{otherwise,} \end{cases}\]

\[I(C)_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } \iota_{l,l+1}(u_l^{j+1}) = u_l^j, \\ 0 & \text{otherwise,} \end{cases}\]

\[A(C)_{l,l+1}(i, j) = \sum_{\alpha \in \Sigma} A(C)_{l,l+1}(i, \alpha, j),\]

for \(i = 1, 2, \ldots, m_\mathbb{C}(l), j = 1, 2, \ldots, m_\mathbb{C}(l+1)\). Let

\[D(C)_{l,l+1} = I(C)_{l,l+1} - A(C)_{l,l+1} : \mathbb{Z}^{m_\mathbb{C}(l)} \to \mathbb{Z}^{m_\mathbb{C}(l+1)}, \quad l \in \mathbb{Z}_+.\]
As \(I(C)_{l+1,l+2} A(C)_{l+1} = A(C)_{l+1,l+2} I(C)_{l+1} \), the matrix \(I(C)_{l+1,l+2} \) induces a homomorphism from \(\mathbb{Z}^{m(l+1)} / D(C)_{l+1,l+2} \mathbb{Z}^{m(l)} \) to \(\mathbb{Z}^{m(l+2)} / D(C)_{l+1,l+2} \mathbb{Z}^{m(l+1)} \) that is denoted by \(T(C)_{l+1,l+2} \). Thanks to Theorem 4.3, we can present the K-theory formulae for ideals of \(\mathcal{O}_\Sigma \).

Theorem 4.5. Let \(\Sigma \) be a \(\lambda \)-graph system satisfying condition (II). Let \(\mathcal{I} \) be an ideal of \(\mathcal{O}_\Sigma \) and \(C \) its corresponding saturated hereditary subset of the vertex set of \(\Sigma \).

Then we have

\[
K_0(\mathcal{I}) \cong \lim_{\rightarrow} \left\{ \mathbb{Z}^{m(l+1)} / D(C)_{l+1,l+2} \mathbb{Z}^{m(l)} ; T(C)_{l+1,l+2} \right\},
\]

\[
K_1(\mathcal{I}) \cong \lim_{\rightarrow} \left\{ \text{Ker} D(C)_{l+1,l+1} \text{ in } \mathbb{Z}^{m(l)} ; I(C)_{l+1,l+1} \right\}.
\]

Although the \(C^* \)-algebra \(\mathcal{O}_\Sigma \) is not necessarily defined by a \(\lambda \)-graph system, in the case when \(C \) has a bounded upper bound, it is given by a \(\lambda \)-graph system. Let

\[V_i^C = C \cup \{ v \in V \mid \text{there exists } u_0 \in C \text{ such that } t^m(u_0) = v \text{ for some } m \in \mathbb{N} \}. \]

A saturated hereditary subset \(C \) of \(V \) is said to have a bounded upper bound if the cardinality of the set \(V_i^C \setminus C \) is finite. It is equivalent to the condition that there exists \(L \in \mathbb{N} \) such that \(V_n \cap V_i^C = V_n \cap C \) for all \(n \geq L \). We will assume that \(C \) has a bounded upper bound. Take \(L \in \mathbb{N} \) as above. Define for \(l \in \mathbb{Z}_+ \)

\[
V_i^C = C \cap V_{i,L}, \\
E_{i,j+i}^C = \left\{ e \in E_{i+j+i,L+j+i} \mid s(e) \in V_i^C, t(e) \in V_j^C \right\}, \\
\lambda^C = \lambda|_{E^C}, \\
i_{i,j+i}^C = \iota|_{E^C}.
\]

Since \(V_i^C \cap V_{i+L} = C \cap V_{i,L} \), one sees that \(t(u) \in V_i^C \) for \(u \in V_i^C \). It is straightforward to see that \((V_i^C, E_{i,j+i}^C, \lambda^C, i_{i,j+i}^C)_{i \in \mathbb{Z}_+} \) yields a \(\lambda \)-graph system, denoted by \(\Sigma^C \). We note that \(C \) has a bounded upper bound if and only if there exists \(L \in \mathbb{N} \) such that \(P_l = P_{L} \) for all \(l \geq L \).

Proposition 4.6. Let \(\Sigma \) be a \(\lambda \)-graph system satisfying condition (II). If a saturated hereditary subset \(C \) of \(V \) has a bounded upper bound, the algebra \(\mathcal{O}_\Sigma(C) \) is isomorphic to the \(C^* \)-algebra \(\mathcal{O}_{\Sigma^C} \) associated with the \(\lambda \)-graph system \(\Sigma^C \). Hence the ideal \(\mathcal{I}^C \) is stably isomorphic to the \(C^* \)-algebra \(\mathcal{O}_{\Sigma^C} \).

Proof. Take \(L \in \mathbb{N} \) such that \(V_n \cap V_i^C = V_n \cap C \) for all \(n \geq L \). As \(P_l = P_{L} \) for all \(l \geq L \), one has \(\mathcal{O}_\Sigma(C) = P_{L} \mathcal{O}_\Sigma P_{L} \) by Proposition 4.2. Let \(\Sigma^{(L)} = (V^{(L)}, E^{(L)}, \lambda^{(L)}, \iota^{(L)}) \) be the \(L \)-shift \(\lambda \)-graph system of \(\Sigma \) defined by

\[
V_i^{(L)} = V_{i,L}, \\
E_{i,j+i}^{(L)} = E_{i+j+i,L+j+i}, \\
\lambda^{(L)} = \lambda|_{E^{(L)}}, \\
i_{i,j+i}^{(L)} = \iota|_{E^{(L)}}.
\]
for $l \in \mathbb{Z}_+$. By [28, Proposition 2.3], the algebra \mathcal{O}_{Σ} coincides with the algebra $\mathcal{O}_{\Sigma^{(2)}}$. It is direct to see that $P_L\mathcal{O}_{\Sigma^{(2)}}P_L$ is isomorphic to \mathcal{O}_{Σ}. Hence $\mathcal{O}_{\Sigma}(C)$ is isomorphic to \mathcal{O}_{Σ}.

5. Examples

Let $G = (V, E)$ be a finite directed graph with finite vertex set V and finite edge set E. Let $\mathcal{G} = (G, \lambda)$ be a labeled graph over an alphabet Σ defined by G and a labeling map $\lambda : E \to \Sigma$. Suppose that it is left-resolving and predecessor-separated (see [19]). Let A_G be the adjacency matrix of G that is defined by

$$A_G(e, f) = \begin{cases} 1 & \text{if } t(e) = s(e), \\ 0 & \text{otherwise,} \end{cases}$$

for $e, f \in E$. The matrix A_G defines a shift of finite type by regarding the edge set E as its alphabet. Since the matrix A_G has entries in $\{0, 1\}$, we have the Cuntz-Krieger algebra \mathcal{O}_{A_G} defined by A_G ([7] compare [18, 33]). By putting $V^{G}_{l+1} = V$, $E^{G}_{l+1} = E$ for $l \in \mathbb{Z}_+$, and $\lambda^G = \lambda$, $\epsilon^G = \text{id}$, we have a λ-graph system $\mathcal{L}_G = (V^G, E^G, \lambda^G, \epsilon^G)$. The C^*-algebra $\mathcal{O}_{\Sigma^{G}}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_{A_G} ([24, Proposition 7.1]).

Let us consider the following labeled graph. The vertex set V is $\{v_1, v_2, v_3\}$. The edges labeled α are from v_2 to v_3 and from v_3 to v_2 and a self-loop at v_1. The edges labeled β are self-loops at v_1 and at v_3. The edge labeled γ is from v_1 to v_2. The resulting labeled graph is denoted by \mathcal{G}. The λ-graph system \mathcal{L}_G is left-resolving and satisfies condition (II). In \mathcal{L}_G, let C be the vertex set corresponding to $\{v_2, v_3\}$. It is saturated hereditary. The λ-graph subsystem \mathcal{L}_G^C of \mathcal{L}_G obtained by removing C consists of one ι-orbit of the vertex $\{v_1\}$ with two self-loops labeled α and β. Hence we have

$$\mathcal{O}_{\Sigma^G} \cong \mathcal{O}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}, \quad \mathcal{O}_{\Sigma^G}/\mathcal{I}_C \cong \mathcal{O}_{\Sigma^G^C} \cong \mathcal{O}_2, \quad \mathcal{I}_C \otimes \mathcal{K} \cong \mathcal{O}_{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}} \otimes \mathcal{K}.$$

The second example is the canonical λ-graph system for the Dyck shift D_2, that is not a sofic subshift. The subshift comes from automata theory and language theory (compare [1, 11]). Its alphabet Σ consists of two kinds of four brackets: $\{., \},$ and $[..]$. The forbidden words consist of words that do not obey the standard bracket rules. Let \mathcal{L}^{D_2} be the canonical λ-graph system for D_2. In [29], the K-groups of the symbolic matrix system for \mathcal{L}^{D_2} have been computed. They are the K-groups for the associated C^*-algebra $\mathcal{O}_{\Sigma^{D_2}}$, so that we see $K_0(\mathcal{O}_{\Sigma^{D_2}}) \cong \mathbb{Z}^{\infty}$, and $K_1(\mathcal{O}_{\Sigma^{D_2}}) \cong 0$, where \mathbb{Z}^{∞} is the countable infinite sum of the group \mathbb{Z}. The C^*-algebra $\mathcal{O}_{\Sigma^{D_2}}$ has a proper ideal.
The λ-graph system \mathcal{L}^D_λ satisfies condition (II). Let $\mathcal{L}^{Ch(D_2)}_\lambda$ be the λ-graph subsystem of \mathcal{L}^D_λ, called the Cantor horizon λ-graph system of D_2 (see [16] for details). Then $\mathcal{L}^{Ch(D_2)}_\lambda$ is aperiodic and a minimal irreducible component of \mathcal{L}^D_λ. Hence the associated algebra $O_{\mathcal{L}^{Ch(D_2)}_\lambda}$ is a simple purely infinite C^*-algebra realized as a quotient of $O_{\mathcal{L}^D_\lambda}$ by an ideal corresponding to a saturated hereditary subset of \mathcal{L}^D_λ. In [16], its K-groups have been computed to be $K_0(O_{\mathcal{L}^{Ch(D_2)}_\lambda}) \cong \mathbb{Z}/2\mathbb{Z} \oplus C(\mathcal{C}, \mathbb{Z})$, and $K_1(O_{\mathcal{L}^{Ch(D_2)}_\lambda}) \cong 0$, where $C(\mathcal{C}, \mathbb{Z})$ denotes the abelian group of all \mathbb{Z}-valued continuous functions on a Cantor discontinuum \mathcal{C}. As $\mathcal{L}^{Ch(D_2)}_\lambda$ is predecessor-separated, the algebra $O_{\mathcal{L}^{Ch(D_2)}_\lambda}$ is generated by only the four partial isometries S_α, R, T corresponding to the brackets $(,)$, $[,]$ corresponding to the brackets $(,)$. Hence $O_{\mathcal{L}^{Ch(D_2)}_\lambda}$ is finitely generated, but its K_0-group is not finitely generated. This means that the algebra $O_{\mathcal{L}^{Ch(D_2)}_\lambda}$ is simple and purely infinite, but not semi-projective (compare [3]). Full details and its generalizations are seen in [16] and [20].

Acknowledgements

The author would like to thank the referee for his valuable suggestions to shorten the original manuscript of this paper, especially for his advices in Section 4 to directly use Morita equivalence.

References

