ON ψ-DIRECT SUMS OF BANACH SPACES AND CONVEXITY

MIKIO KATO, KICHI-SUKE SAITO and TAKAYUKI TAMURA

Dedicated to Maestro Ivry Gitlis on his 80th birthday with deep respect and affection

(Received 18 April 2002; revised 31 January 2003)

Communicated by A. Pryde

Abstract

Let X_1, X_2, \ldots, X_N be Banach spaces and ψ a continuous convex function with some appropriate conditions on a certain convex set in \mathbb{R}^{N-1}. Let $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi$ be the direct sum of X_1, X_2, \ldots, X_N equipped with the norm associated with ψ. We characterize the strict, uniform, and locally uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi$ by means of the convex function ψ. As an application these convexities are characterized for the ℓ_p-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi, q}$ ($1 < q \leq p \leq \infty$, $q < \infty$), which includes the well-known facts for the ℓ_p-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$ in the case $p = q$.

Keywords and phrases: absolute norm, convex function, direct sum of Banach spaces, strictly convex space, uniformly convex space, locally uniformly convex space.

1. Introduction and preliminaries

A norm $\| \cdot \|$ on \mathbb{C}^N is called absolute if $\|(z_1, \ldots, z_N)\| = \|(|z_1|, \ldots, |z_N|)\|$ for all $(z_1, \ldots, z_N) \in \mathbb{C}^N$, and normalized if $\|(1, 0, \ldots, 0)\| = \cdots = \|(0, \ldots, 0, 1)\| = 1$ (see for example [3, 2]). In case of $N = 2$, according to Bonsall and Duncan [3] (see also [12]), for every absolute normalized norm $\| \cdot \|$ on C^2 there corresponds a unique continuous convex function ψ on the unit interval $[0, 1]$ satisfying

$$\max\{1 - t, t\} \leq \psi(t) \leq 1$$

The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

© 2003 Australian Mathematical Society 1446-8107/03 $A2.00 + 0.00$
under the equation $\psi(t) = \|(1 - t, t)\|$. Recently in [11] Saito, Kato and Takahashi presented the N-dimensional version of this fact, which states that for every absolute normalized norm $\| \cdot \|$ on \mathbb{C}^N there corresponds a unique continuous convex function ψ satisfying some appropriate conditions on the convex set

$$\Delta_N = \left\{ t = (t_1, \ldots, t_{N-1}) \in \mathbb{R}^{N-1} : \sum_{j=1}^{N-1} t_j \leq 1, t_j \geq 0 \right\}$$

under the equation $\psi(t) = \left\| (1 - \sum_{j=1}^{N-1} t_j, t_1, \ldots, t_{N-1}) \right\|$.

For an arbitrary finite number of Banach spaces X_1, X_2, \ldots, X_N, we define the ψ-direct sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ to be their direct sum equipped with the norm

$$\|(x_1, x_2, \ldots, x_N)\|_{\psi} = \| (\|x_1\|, \|x_2\|, \ldots, \|x_N\|)\|_{\psi} \quad \text{for} \quad x_j \in X_j,$$

where $\| \cdot \|_{\psi}$ term in the right-hand side is the absolute normalized norm on \mathbb{C}^N with the corresponding convex function ψ. This extends the notion of ℓ_p-sum of Banach spaces. The aim of this paper is to characterize the strict, and uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$. The locally uniform convexity is also included. For the case $N = 2$, the first two have been recently proved in Takahashi-Kato-Saito [13] and Saito-Kato [10], respectively. However the proof of the uniform convexity for the 2-dimensional case given in [10] seems difficult to be extended to the N-dimensional case, though it is of independent interest as it is of real analytic nature and maybe useful for estimating the modulus of convexity. Our proof for the N-dimensional case is essentially different from that in [10]. As an application we shall consider the $\ell_{p,q}$-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ and show that $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ is uniformly convex if and only if, whenever $1 < q \leq p \leq \infty$, $q < \infty$. The same is true for the strict and locally uniform convexity. These results include the well-known facts for the ℓ_p-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$ as the case $p = q$.

Let us recall some definitions. A Banach space X or its norm $\| \cdot \|$ is called strictly convex if $\|x\| = \|y\| = 1$ ($x \neq y$) implies $\|(x + y)/2\| < 1$. This is equivalent to the following statement: if $\|x + y\| = \|x\| + \|y\|$, $x \neq 0$, $y \neq 0$, then $x = \lambda y$ with some $\lambda > 0$ (see for example [9, page 432], [1]). X is called uniformly convex provided for any ϵ ($0 < \epsilon < 2$) there exists $\delta > 0$ such that whenever $\|x - y\| \geq \epsilon$. $\|x\| = \|y\| = 1$, one has $\|(x + y)/2\| \leq 1 - \delta$, or equivalently, provided for any ϵ ($0 < \epsilon < 2$) one has $\delta_X(\epsilon) > 0$, where δ_X is the modulus of convexity of X, that is,

$$\delta_X(\epsilon) := \inf\{1 - \|(x + y)/2\| ; \|x - y\| \geq \epsilon, \|x\| = \|y\| = 1\} \quad (0 \leq \epsilon \leq 2).$$

We also have the following restatement: X is uniformly convex if and only if, whenever $\|x_n\| = \|y_n\| = 1$ and $\|(x_n + y_n)/2\| \to 1$, it follows that $\|x_n - y_n\| \to 0$. X is called locally uniformly convex (see for example [9, 4]) if for any $x \in X$ with $\|x\| = 1$ and
for any ϵ such that $0 < \epsilon < 2$ there exists $\delta > 0$ such that if $\|x - y\| \geq \epsilon$, $\|y\| = 1$, then $\|(x + y)/2\| \leq 1 - \delta$. Clearly the notion of locally uniform convexity is between those of uniform and strict convexities.

2. Absolute norms on \mathbb{C}^N and ψ-direct sums $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\Psi}$

Let AN_N denote the family of all absolute normalized norms on \mathbb{C}^N. Let

$$\Delta_N = \{(s_1, s_2, \ldots, s_{N-1}) \in \mathbb{R}^{N-1} : s_1 + s_2 + \cdots + s_{N-1} \leq 1, s_j \geq 0 (\forall j)\}.$$

For any $\| \cdot \| \in AN_N$ define the function ψ on Δ_N by

(1) $\psi(s) = \|(1 - s_1 - \cdots - s_{N-1}, s_1, \ldots, s_{N-1})\|$ for $s = (s_1, \ldots, s_{N-1}) \in \Delta_N$.

Then ψ is continuous and convex on Δ_N, and satisfies the following conditions:

(A$_0$) $\psi(0, \ldots, 0) = \psi(1, 0, \ldots, 0) = \cdots = \psi(0, \ldots, 0, 1) = 1$,

(A$_1$) $\psi(s_1, \ldots, s_{N-1}) \geq (s_1 + \cdots + s_{N-1})\psi\left(\frac{s_1}{\sum_{i=1}^{N-1} s_i}, \ldots, \frac{s_{N-1}}{\sum_{i=1}^{N-1} s_i}\right),$

(A$_2$) $\psi(s_1, \ldots, s_{N-1}) \geq (1 - s_1)\psi\left(0, \frac{s_2}{1 - s_1}, \ldots, \frac{s_{N-1}}{1 - s_1}\right),$

(A$_N$) $\psi(s_1, \ldots, s_{N-1}) \geq (1 - s_{N-1})\psi\left(\frac{s_1}{1 - s_{N-1}}, \ldots, \frac{s_{N-2}}{1 - s_{N-1}}, 0\right).$

Note that from (A$_0$) it follows that $\psi(s_1, \ldots, s_{N-1}) \leq 1$ on Δ_N as ψ is convex. Denote Ψ_N be the family of all continuous convex functions ψ on Δ_N satisfying (A$_0$), (A$_1$), (A$_2$), (A$_N$). Then the converse holds true: For any $\psi \in \Psi_N$ define

(2) $\|z_1, \ldots, z_N\|_{\psi} = \left\{\begin{array}{ll}
\left(\sum_{i=1}^{N} |z_i|\right) \psi\left(|z_1|/\left(\sum_{i=1}^{N} |z_i|\right), \ldots, |z_N|/\left(\sum_{i=1}^{N} |z_i|\right)\right) & \text{if } (z_1, \ldots, z_N) \neq (0, \ldots, 0), \\
0 & \text{if } (z_1, \ldots, z_N) = (0, \ldots, 0).
\end{array}\right.$

Then $\| \cdot \|_\psi \in AN_N$ and $\| \cdot \|_\psi$ satisfies (1). Thus the families AN_N and Ψ_N are in one-to-one correspondence under equation (1) (Saito-Kato-Takahashi [11, Theorem 4.2]). The ℓ_p-norms

$$\|(z_1, \ldots, z_N)\|_p = \left\{\begin{array}{ll}
|z_1|^p + \cdots + |z_N|^p & \text{if } 1 \leq p < \infty, \\
\max\{|z_1|, \ldots, |z_N|\} & \text{if } p = \infty.
\end{array}\right.$$
are typical examples of absolute normalized norms, and for any \(\| \cdot \| \in \mathcal{AN} \), we have

\[
(3) \quad \| \cdot \|_\infty \leq \| \cdot \| \leq \| \cdot \|_1
\]

([[11], Lemma 3.1], see also [3]). The functions corresponding to \(\ell_p \)-norms on \(\mathbb{C}^N \) are

\[
\psi_p(s_1, \ldots, s_{N-1}) = \left\{ \begin{array}{ll}
\left(\left(1 - \sum_{j=1}^{N-1} s_j \right)^p + \sum_{j=1}^{N-1} s_j^p \right)^{1/p} & \text{if } 1 \leq p < \infty, \\
\max \left\{ 1 - \sum_{j=1}^{N-1} s_j, s_1, \ldots, s_{N-1} \right\} & \text{if } p = \infty
\end{array} \right.
\]

for \((s_1, \ldots, s_{N-1}) \in \Delta_N\).

Let \(X_1, X_2, \ldots, X_N \) be Banach spaces. Let \(\psi \in \Psi_N \) and let \(\| \cdot \|_\psi \) be the corresponding norm in \(\mathcal{AN} \). Let \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \) be the direct sum of \(X_1, X_2, \ldots, X_N \) equipped with the norm

\[
(4) \quad \| (x_1, x_2, \ldots, x_N) \|_\psi := \| (\| x_1 \|, \| x_2 \|, \ldots, \| x_N \|) \|_\psi \quad \text{for } x_j \in X_j.
\]

As is immediately seen, \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \) is a Banach space.

Example. Let \(1 \leq q \leq p \leq \infty \), \(q < \infty \). We consider the Lorentz \(\ell_{p,q} \)-norm

\[
\| z \|_{p,q} = \{ \sum_{j=1}^{N} j^{q/(p-1)} z_j^q \}^{1/q} \quad \text{for } z = (z_1, \ldots, z_N) \in \mathbb{C}^N,
\]

where \(\{z_j^*\} \) is the non-increasing rearrangement of \(\{|z_j|\} \), that is, \(z_1^* \geq z_2^* \geq \cdots \geq z_N^* \). (Note that in case of \(1 \leq p < q \leq \infty \), \(\| \cdot \|_{p,q} \) is not a norm but a quasi-norm (see [6, Proposition 1], [14, page 126])). Evidently \(\| \cdot \|_{p,q} \in \mathcal{AN} \) and the corresponding convex function \(\psi_{p,q} \) is obtained by

\[
(5) \quad \psi_{p,q}(s) = \| (1 - s_1 - \cdots - s_{N-1}, s_1, \ldots, s_{N-1}) \|_{p,q}
\]

for \((s_1, \ldots, s_{N-1}) \in \Delta_N\), that is, \(\| \cdot \|_{p,q} = \| \cdot \|_{\psi_{p,q}} \). Let \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q} \) be the direct sum of Banach spaces \(X_1, X_2, \ldots, X_N \) equipped with the norm

\[
\| (x_1, \ldots, x_N) \|_{p,q} := \| (\| x_1 \|, \ldots, \| x_N \|) \|_{p,q},
\]

we call it the \(\ell_{p,q} \)-sum of \(X_1, X_2, \ldots, X_N \). If \(p = q \) the \(\ell_{p,p} \)-sum is the usual \(\ell_p \)-sum \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p \).

For some other examples of absolute norms on \(\mathbb{C}^N \) we refer the reader to [11] (see also [12]).

3. Strict convexity of \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \)

A function \(\psi \) on \(\Delta_N \) is called strictly convex if for any \(s, t \in \Delta_N (s \neq t) \) one has \(\psi((s + t)/2) < (\psi(s) + \psi(t))/2 \). For absolute norms on \(\mathbb{C}^N \), we have
Lemma 3.1 (Saito-Kato-Takahashi [11, Theorem 4.2]). Let \(\psi \in \Psi_N \). Then \((\mathbb{C}^N, \| \cdot \|_\psi)\) is strictly convex if and only if \(\psi \) is strictly convex.

The following lemma concerning the monotonicity property of the absolute norms on \(\mathbb{C}^N \) is useful in the sequel.

Lemma 3.2 (Saito-Kato-Takahashi [11, Lemma 4.1]). Let \(\psi \in \Psi_N \). Let \(z = (z_1, \ldots, z_N) \), \(w = (w_1, \ldots, w_N) \in \mathbb{C}^N \).

(i) If \(|z_j| \leq |w_j| \) for all \(j \), then \(\| z \|_\psi \leq \| w \|_\psi \).

(ii) Let \(\psi \) be strictly convex. If \(|z_j| \leq |w_j| \) for all \(j \) and \(|z_j| < |w_j| \) for some \(j \), then \(\| z \|_\psi < \| w \|_\psi \).

Theorem 3.3. Let \(X_1, X_2, \ldots, X_N \) be Banach spaces and let \(\psi \in \Psi_N \). Then \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi\) is strictly convex if and only if \(X_1, X_2, \ldots, X_N \) are strictly convex and \(\psi \) is strictly convex.

Proof. Let \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi\) be strictly convex. Then, each \(X_j \) and \((\mathbb{C}^N, \| \cdot \|_\psi)\) are strictly convex since they are isometrically imbedded into \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi\). According to Lemma 3.1, \(\psi \) is strictly convex.

Conversely, let each \(X_j \) and \(\psi \) be strictly convex. Take arbitrary \(x = (x_j) \), \(y = (y_j) \), \(x \neq y \) in \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi\) with \(\| x \|_\psi = \| y \|_\psi = 1 \). Let first \((\| x_1 \|, \ldots, \| x_N \|) = (\| y_1 \|, \ldots, \| y_N \|)\). Then, if \(\| x + y \|_\psi = 2 \),

\[
2 = \| x + y \|_\psi = \| (x_1 + y_1, \ldots, x_N + y_N) \|_\psi \\
\leq \| (x_1 + y_1, \ldots, x_N + y_N) \|_\psi \\
\leq \| x \|_\psi + \| y \|_\psi = 2,
\]

from which it follows that \(\| x_j + y_j \| = \| x_j \| + \| y_j \| \) for all \(j \) by Lemma 3.2. As each \(X_j \) is strictly convex, \(x_j = k_j y_j \) with \(k_j > 0 \). Since \(\| x_j \| = \| y_j \| \), we have \(k_j = 1 \) and hence \(x_j = y_j \) for all \(j \), or \(x = y \), which is a contradiction. Therefore we have \(\| x + y \|_\psi < 2 \). Let next \((\| x_1 \|, \ldots, \| x_N \|) \neq (\| y_1 \|, \ldots, \| y_N \|)\). Since \(\psi \) is strictly convex, \((\mathbb{C}^N, \| \cdot \|_\psi)\) is strictly convex by Lemma 3.1. Consequently we have

\[
\| x + y \|_\psi = \| (x_1 + y_1, \ldots, x_N + y_N) \|_\psi \\
\leq \| (x_1 + y_1, \ldots, x_N + y_N) \|_\psi \\
= \| (x_1, \ldots, x_N) + (y_1, \ldots, y_N) \|_\psi < 2,
\]

as is desired. \(\square \)

Now we see that the function \(\psi_{p,q} \) in the above example is strictly convex if \(1 < q \leq p \leq \infty, q < \infty \). We need the next lemma.
Lemma 3.4 ([5]). Let \(\{\alpha_j\}, \{\beta_j\} \in \mathbb{R}^N \) and \(\alpha_j \geq 0, \beta_j \geq 0 \). Let \(\{\alpha_j^*\}, \{\beta_j^*\} \) be their non-increasing rearrangements, that is, \(\alpha_j^* \geq \alpha_j^* \geq \cdots \geq \alpha_N^* \) and \(\beta_j^* \geq \beta_j^* \geq \cdots \geq \beta_N^* \). Then \(\sum_{j=1}^N \alpha_j \beta_j \leq \sum_{j=1}^N \alpha_j^* \beta_j^* \).

Proposition 3.5. Let \(1 < q \leq p \leq \infty, \ q < \infty \). Then the function \(\psi_{p,q} \) given by (5) is strictly convex on \(N \).

Proof. Let \(s = (s_j), t = (t_j) \in N, s \neq t \). Without loss of generality we may assume that

\[
2 = (s_1 + t_1) - \cdots - (s_{N-1} + t_{N-1}) \geq s_1 + t_1 \geq \cdots \geq s_{N-1} + t_{N-1} \geq 0.
\]

Put

\[
\sigma = (1 - s_1 - \cdots - s_{N-1}, 2^{1/p-1/q} s_1, \ldots, N^{1/p-1/q} s_{N-1}),
\]

\[
\tau = (1 - t_1 - \cdots - t_{N-1}, 2^{1/p-1/q} t_1, \ldots, N^{1/p-1/q} t_{N-1}).
\]

Then by Lemma 3.4 we have

\[
\|\sigma\|_q = \left((1 - s_1 - \cdots - s_{N-1})^q + 2^{q/p-1} s_1^q + \cdots + N^{q/p-1} s_{N-1}^q \right)^{1/q} \leq \|(1 - s_1 - \cdots - s_{N-1}, s_1, \ldots, s_{N-1})\|_{p,q} = \psi_{p,q}(s)
\]

and \(\|\tau\|_q \leq \psi_{p,q}(t) \). On the other hand,

\[
\psi_{p,q}\left(\frac{s + t}{2} \right) = \left\{ \left(1 - \sum_{i=1}^{N-1} \frac{s_i + t_i}{2} \right) + \sum_{i=1}^{N-1} (i + 1)^{q/p-1} \left(\frac{s_i + t_i}{2} \right) \right\}^{1/q} \leq \left\{ \left(1 - \sum_{i=1}^{N-1} s_i \right) + \left(1 - \sum_{i=1}^{N-1} t_i \right) \right\}^{1/q} = \frac{\|\sigma + \tau\|_q}{2}.
\]

Since \(\ell_q \)-norm \(\|\cdot\|_q (1 < q < \infty) \) is strictly convex and \(s \neq t \), we have \(\|\sigma + \tau\|_q < \|\sigma\|_q + \|\tau\|_q \). Indeed, if \(\|\sigma + \tau\|_q = \|\sigma\|_q + \|\tau\|_q \), then \(\sigma = k \tau \) with some \(k > 0 \) (note that \(\sigma \neq 0, \tau \neq 0 \)). Hence \(s_j = kt_j \) for all \(j \), and \(1 - \sum_{i=1}^{N-1} s_i = k \left(1 - \sum_{i=1}^{N-1} t_i \right) \).

Therefore, \(k = 1 \) and we have \(s = t \), which is a contradiction. Consequently,

\[
\psi_{p,q}\left(\frac{s + t}{2} \right) = \frac{\|\sigma + \tau\|_q}{2} < \frac{\|\sigma\|_q + \|\tau\|_q}{2} \leq \psi_{p,q}(s) + \psi_{p,q}(t),
\]

or \(\psi_{p,q} \) is strictly convex. \(\square \)

By Theorem 3.3 and Proposition 3.5 we have the following result for the \(\ell_{p,q} \)-sum of Banach spaces.
Corollary 3.6. Let \(1 < q < p \leq \infty, \ q < \infty \). Then, \(\ell_{q,p}-\text{sum} (X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q} \) is strictly convex if and only if \(X_1, X_2, \ldots, X_N \) are strictly convex.

In particular, the \(\ell_{p,1}-\text{sum} (X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p} \), \(1 < p < \infty \), is strictly convex if and only if \(X_1, X_2, \ldots, X_N \) are strictly convex.

4. Uniform convexity of \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \)

Let us characterize the uniform convexity of \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \).

Theorem 4.1. Let \(X_1, X_2, \ldots, X_N \) be Banach spaces and let \(\psi \in \Psi_N \). Then \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \) is uniformly convex if and only if \(X_1, X_2, \ldots, X_N \) are uniformly convex and \(\psi \) is strictly convex.

Proof: The necessity assertion is proved in the same way as the proof of Theorem 3.3. Assume that \(X_1, X_2, \ldots, X_N \) are uniformly convex and \(\psi \) is strictly convex.

Take an arbitrary \(\epsilon > 0 \) and put

\[
\delta := 2\delta_X(\epsilon) = \inf \{ 2 - \| x + y \|_\psi : \| x - y \|_\psi \geq \epsilon, \| x \|_\psi = \| y \|_\psi = 1 \}.
\]

We show that \(\delta > 0 \). There exist sequences \(\{x_n\} \) and \(\{y_n\} \) in \((X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi \) so that

\[
\| x_n - y_n \|_\psi \geq \epsilon, \quad \| x_n \|_\psi = \| y_n \|_\psi = 1
\]

and

\[
\lim_{n \to \infty} \| x_n + y_n \|_\psi = 2 - \delta.
\]

Let \(x_n = (x_n^{(1)}, \ldots, x_n^{(N)}) \) and \(y_n = (y_n^{(1)}, \ldots, y_n^{(N)}) \). Since for each \(1 \leq j \leq N \), \(\| x_j^{(n)} \| = \| 0, \ldots, 0, x_j^{(n)}, 0, \ldots, 0 \|_\psi \leq \| x_n \|_\psi = 1 \) and \(\| y_j^{(n)} \| = \| y_n \|_\psi = 1 \) for all \(n \), the sequences \(\{ \| x_j^{(n)} \| \} \) and \(\{ \| y_j^{(n)} \| \} \), have a convergent subsequence respectively. So we may assume that \(\| x_j^{(n)} \| \to a_j, \| y_j^{(n)} \| \to b_j \) as \(n \to \infty \). Further, in the same way, we may assume that

\[
\| x_j^{(n)} - y_j^{(n)} \| \to c_j \quad \text{as} \quad n \to \infty
\]

and

\[
\| x_j^{(n)} + y_j^{(n)} \| \to d_j \quad \text{as} \quad n \to \infty.
\]

Put \(K_n = \sum_{j=1}^{N} \| x_j^{(n)} \| \). Then \(\| x_n \|_\psi = K_n \psi (\| x_1^{(n)} \| / K_n, \ldots, \| x_N^{(n)} \| / K_n) = 1 \). Letting \(n \to \infty \), as \(\psi \) is continuous, we have

\[
\| (a_1, \ldots, a_N) \|_\psi = \left(\sum_{j=1}^{N} a_j \right) \psi \left(\frac{a_2}{\sum_{j=1}^{N} a_j}, \ldots, \frac{a_N}{\sum_{j=1}^{N} a_j} \right) = 1.
\]
Also we have

\[
\| (b_1, \ldots, b_N) \|_\psi = \left(\sum_{j=1}^N b_j \right) \psi \left(\frac{b_2}{\sum_{j=1}^N b_j}, \ldots, \frac{b_N}{\sum_{j=1}^N b_j} \right) = 1.
\]

Next let \(n \to \infty \) in (6), or in

\[
\| x_n - y_n \|_\psi = \left(\sum_{j=1}^N \| x_j^{(n)} - y_j^{(n)} \| \right) \times \psi \left(\frac{\| x_2^{(n)} - y_2^{(n)} \|}{\sum_{j=1}^N \| x_j^{(n)} - y_j^{(n)} \|}, \ldots, \frac{\| x_N^{(n)} - y_N^{(n)} \|}{\sum_{j=1}^N \| x_j^{(n)} - y_j^{(n)} \|} \right) \geq \epsilon.
\]

Then we have

\[
\| (c_1, \ldots, c_N) \|_\psi = \left(\sum_{j=1}^N c_j \right) \psi \left(\frac{c_2}{\sum_{j=1}^N c_j}, \ldots, \frac{c_N}{\sum_{j=1}^N c_j} \right) \geq \epsilon
\]

by (8). In the same way, according to (7) and (9), we have

\[
\| (d_1, \ldots, d_N) \|_\psi = 2 - \delta.
\]

Now, assume that \((a_1, \ldots, a_N) \neq (b_1, \ldots, b_N) \). Then, according to (10), (11) and the strict convexity of \(\psi \) we obtain that

\[
2 - \delta = \| (d_1, \ldots, d_N) \|_\psi \leq \| (a_1 + b_1, \ldots, a_N + b_N) \|_\psi < 2,
\]

which implies \(\delta > 0 \). Next, let \((a_1, \ldots, a_N) = (b_1, \ldots, b_N) \). Since \((c_1, \ldots, c_N) \neq (0, \ldots, 0) \) from (12), we may assume that \(c_1 > 0 \) without loss of generality. Then as

\[
c_1 = \lim_{n \to \infty} \| x_1^{(n)} - y_1^{(n)} \| \leq \lim_{n \to \infty} \left(\| x_1^{(n)} \| + \| y_1^{(n)} \| \right) = a_1 + b_1 = 2a_1,
\]

we have \(a_1 > 0 \) and

\[
0 < \frac{c_1}{a_1} = \lim_{n \to \infty} \frac{\| x_1^{(n)} \|}{\| x_1^{(n)} - y_1^{(n)} \|} = \lim_{n \to \infty} \frac{\| x_1^{(n)} \|}{\| y_1^{(n)} \|} = 1.
\]

Indeed, we have the latter identity because

\[
\left\| \frac{x_1^{(n)}}{\| x_1^{(n)} \|} - \frac{y_1^{(n)}}{\| y_1^{(n)} \|} \right\| \leq \| y_1^{(n)} \| \left(\frac{1}{\| x_1^{(n)} \|} - \frac{1}{\| y_1^{(n)} \|} \right) \rightarrow b_1 \left| \frac{1}{a_1} - \frac{1}{b_1} \right| = 0 \quad \text{as} \ n \to \infty.
\]
Since X_1 is uniform convex, it follows from (14) that

$$
\frac{d_1}{d_1} = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} + \frac{y_1^{(n)}}{\|y_1^{(n)}\|} \right\| = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} + \frac{y_1^{(n)}}{\|y_1^{(n)}\|} \right\| < 2,
$$

whence $d_1 < 2a_1$. Accordingly, by (13) and Lemma 3.2 we obtain that

$$
2 - \delta = \|(d_1, d_2, \ldots, d_N)\|_\psi < \|(2a_1, a_2 + b_2, \ldots, a_N + b_N)\|_\psi = \|(a_1 + b_1, a_2 + b_2, \ldots, a_N + b_N)\|_\psi \leq \|(a_1, \ldots, a_N)\|_\psi + \|(b_1, \ldots, b_N)\|_\psi = 2,
$$

which implies $\delta > 0$. This completes the proof.

The parallel argument works for the locally uniform convexity and we obtain the next result.

Theorem 4.2. Let $\psi \in \Psi_N$. Then $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi$ is locally uniformly convex if and only if X_1, X_2, \ldots, X_N are locally uniformly convex and ψ is strictly convex.

Indeed, for the sufficiency, take an arbitrary $x \in (X_1 \oplus X_2 \oplus \cdots \oplus X_N)_\psi$ with $\|x\|_\psi = 1$ and merely let $x_n = x$ in the above proof. By Theorem 4.1 and Theorem 4.2 combined with Proposition 3.5 we obtain the following corollary.

Corollary 4.3. Let $1 < q \leq p \leq \infty$, $q < \infty$. Then, $\ell_{p,q}$-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ is uniformly convex (locally uniformly convex) if and only if X_1, X_2, \ldots, X_N are uniformly convex (locally uniformly convex).

In particular, the ℓ_p-sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p}$, $1 < p < \infty$, is uniformly convex (locally uniformly convex) if and only if X_1, X_2, \ldots, X_N are uniformly convex (locally uniformly convex).

References

Department of Mathematics
Kyushu Institute of Technology
Kitakyushu 804-8550
Japan
e-mail: katom@tobata.isc.kyutech.ac.jp

Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-2181
Japan
e-mail: saito@math.sc.niigata-u.ac.jp

Graduate School of Social Sciences and Humanities
Chiba University
Chiba 263-8522
Japan
e-mail: tamura@le.chiba-u.ac.jp