J. Aust. Math. Soc.  75 (2003), 163-180
Projective descriptions of the (LF)-spaces of type $LB(\lambda_p(A),F)$

Angela A. Albanese
  Dipartimento di Matematica `E. De Giorgi'
  Università di Lecce, C.P. 193
  Via Per Arnesano
  73100 Lecce

Let $1\leq p<+\infty$ or $p=0$ and let $A=(a_n)_n$ be an increasing sequence of strictly positive weights on $I$. Let $F$ be a Fréchet space. It is proved that if $\lambda _p(A)$ satisfies the density condition of Heinrich and a certain condition $(C_t)$ holds, then the (LF)-space $LB_i(\lambda _p(A),F)$ is a topological subspace of $L_b(\lambda _p(A),F)$. It is also proved that these conditions are necessary provided $F=\lambda _q(A)$ or $F$ contains a complemented copy of $l_q$ with $1<p\leq q <+\infty$.
Download the article in PDF format (size 160 Kb)

TeXAdel Scientific Publishing ©  Australian MS