MULTIPlicITIES OF HIGHER LIE CHARACTERS

MANFRED SCHOCKER

(Received 17 June 2001; revised 26 April 2002)

Communicated by Jie Du

Abstract

The higher Lie characters of the symmetric group S_n arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of S_n. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraskiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.

Keywords and phrases: symmetric group, general linear group, free Lie algebra, tableau, major index.

1. Introduction

At the beginning of the last century Schur studied the structure of the tensor algebra $T(V)$ over a finite dimensional K-vector space V as a $GL(V)$-module. In his thesis ([13]) and a famous subsequent paper ([14]) he was able to describe the decomposition of the homogeneous components

$$T_n(V) := V \otimes \cdots \otimes V,$$

of degree n in $T(V)$ into irreducible $GL(V)$-modules using the irreducible representations of the symmetric group S_n. The usual Lie bracketing $[x, y] := xy - yx$ turns $T(V)$ into a Lie algebra. The Lie subalgebra $L(V)$ generated by V is free over any basis of V by a classical result of Witt ([17]), and $L_n(V) := T_n(V) \cap L(V)$ is a $GL(V)$-submodule of $T_n(V)$ for all n. Let $q = q_1 \ldots q_k$ be a partition of n, that is, $q_1 \geq \cdots \geq q_k$ and $q_1 + \cdots + q_k = n$. Then we define

$$L_q(V) := \left\{ \sum_{\pi \in \mathcal{S}_n} P_{1, \pi} \cdots P_{k, \pi} \mid P_i \in L_{q_i}(V) \text{ for } 1 \leq i \leq k \right\},$$

\(© 2003\) Australian Mathematical Society 1446-8107/03 $A2.00 + 0.00$
By the Poincaré-Birkhoff-Witt theorem, \(T_n(V) \) is the direct sum of these subspaces:

\[
T_n(V) = \bigoplus_{q \vdash n} L_q(V),
\]

and this decomposition is \(GL(V) \)-invariant.

Meanwhile, different families of idempotents \(e_q \) in the group algebra \(KS_n \) indexed by partitions have been introduced such that \(L_q(V) \equiv e_q T_n(V) \) for all \(q \) (see, for example, [2, 3, 11]). For any decomposition \(e_q KS_n = \bigoplus_p a_{q,p} M_p \) into irreducible \(S_n \)-modules, we now have

\[
L_q(V) = e_q T_n(V) \equiv e_q KS_n \otimes_{KS_n} T_n(V) = \bigoplus_p a_{q,p} (M_p \otimes_{KS_n} T_n(V)).
\]

In this decomposition, by Schur’s fundamental result, \(M_p \otimes_{KS_n} T_n(V) \) is either 0 or an irreducible \(GL(V) \)-module. Hence the \(GL(V) \)-module structure of \(L_q(V) \) is completely determined by the multiplicities \(a_{q,p} \) of the higher Lie module \(e_q KS_n \) of \(S_n \). In this vein, for the special case of \(q = n \), the problem of describing the \(GL(V) \)-module structure of \(L_n(V) \) formulated by Thrall ([16]) could finally be solved in a satisfying way by works of Klyachko ([8]) and Krasikiewicz and Weyman ([9]).

The higher Lie characters \(\lambda_q \) of \(S_n \) corresponding to the modules \(e_q KS_n \) sum up to the regular character of \(S_n \), by (1), and it is natural to ask for their multiplicities for arbitrary \(q \). In this paper, a combinatorial description of these multiplicities is given in terms of alternating sums of numbers of standard tableaux with certain major index properties (Section 3). For \(q = n \), we obtain the Krasikiewicz-Weyman result mentioned above. Our approach is based on a generalization of Klyachko’s result (Section 2) combined with the calculus of noncommutative character theory introduced in [6] (Section 4).

2. The reduction to partitions of block type

Let \(q \) be a partition of \(n \). The higher Lie character \(\lambda_q \) is induced by a certain linear character of the centralizer of an element of cycle type \(q \) in \(S_n \). For \(q = n \), this result is due to Klyachko ([8]). In full generality, it is implicitly contained in [1] for the first time (for details, see [12, Section 8.5]) and will be briefly recalled in two steps in this section.

Let \(\mathbb{N} \) (\(\mathbb{N}_0 \), respectively) be the set of all positive (nonnegative, respectively) integers and \(\mathbf{n} := \{ k \in \mathbb{N} \mid k \leq n \} \) for all \(n \in \mathbb{N}_0 \). Let \(\mathbb{N}^* \) be a free monoid over the alphabet \(\mathbb{N} \). We write \(q \cdot r \) for the concatenation product of \(q, r \in \mathbb{N}^* \) in order to avoid confusion with the ordinary product in \(\mathbb{N} \). Accordingly, we denote by \(d^k \) the \(k \)-th power of a letter \(d \in \mathbb{N} \) in \(\mathbb{N}^* \), for all \(k \in \mathbb{N}_0 \). If \(n \in \mathbb{N} \) and \(q = q_1, \ldots, q_k \in \mathbb{N}^* \) such that
Let K be a field of characteristic 0 containing a primitive n-th root of unity ζ^n for all $n \in \mathbb{N}$. For all $n \in \mathbb{N}_0$, we denote by $\text{Cl}_K(S_n)$ the ring of class functions of the symmetric group S_n. Let C_q be the conjugacy class consisting of all permutations π whose cycle partition $z(\pi)$ is a rearrangement of q, for all $q \in \mathbb{N}^*$. Let $\text{ch}_q \in \text{Cl}_K(S_n)$ such that $(\chi, \text{ch}_q)_{S_n} = \chi(C_q)$ is the value of χ on any element $\pi \in C_q$ for all $\chi \in \text{Cl}_K(S_n)$. Then, up to a certain factor, ch_q is the characteristic function of C_q in $\text{Cl}_K(S_n)$, and we have $C_q = C_r$ and $\text{ch}_q = \text{ch}_r$ whenever q is a rearrangement of r, for all $q, r \in \mathbb{N}^*$. The outer product \cdot on the direct sum $\text{Cl} := \bigoplus_{n \in \mathbb{N}_0} \text{Cl}_K(S_n)$ may now be defined by

\begin{equation}
\text{ch}_q \cdot \text{ch}_r := \text{ch}_{q \cdot r}
\end{equation}
for all $q, r \in \mathbb{N}^*$. It corresponds via Frobenius’ characteristic mapping to the ordinary multiplication of symmetric functions.

Our starting point is the following part of [12, Theorem 8.23], which already occurs in [16, Section 8].

Lemma 2.1. Let $n \in \mathbb{N}$ and $q \vdash n$. Denote by a_i the multiplicity of the letter i in q, for all $i \in \mathbb{N}$. Then we have $\lambda_q = \lambda_{n^a} \cdot \ldots \cdot \lambda_1^a$.

Hence, with ζ^p denoting the irreducible character of S_n corresponding to p for $p \vdash n$, the problem of describing the multiplicities $a_q \cdot p \vdash S_n$ may be reduced to the case that q is of block type, that is, $q = d^k$ is the k-th power of a single letter d. Indeed, for partitions $q = q_1 \ldots q_k \vdash n$, $r = r_1 \ldots r_l \vdash y$ such that $q_i > r_i$ and $x + y = n$, we have

\begin{equation}
(\lambda_q \cdot \zeta^p)_{S_n} = (\lambda_q \cdot \lambda_r \cdot \zeta^p)_{S_n} = \sum_{x+y} c_{i,j}^p a_{q,i} a_{r,j}
\end{equation}
by Lemma 2.1, where $c_{i,j}^p = (\zeta^i \cdot \zeta^j, \zeta^p)_{S_n}$ is the well-known Littlewood-Richardson coefficient.

For all $n, m \in \mathbb{N}_0$, $\psi \in S_n$ and $\sigma \in S_m$, we define $\psi \# \sigma \in S_{n+m}$ by

\[i(\psi \# \sigma) := \begin{cases} i \psi & i \leq n; \\ (i - n)\sigma + n & i > n \end{cases} \]

for all $i \in n + m$. Furthermore, for $d, k \in \mathbb{N}$, $n := dk$ and $\pi \in S_k$, we define $\pi^{(d_i)} \in S_n$ by

\[(dj - i)\pi^{(d_i)} := d(j\pi) - i \]
for all \(j \in \mathcal{J} \), \(i \in \mathcal{I} \cup \{0\} \). That is, \(\pi^{(d^t)} \) is permuting the \(k \) successive blocks of length \(d \) in \(\mathcal{J} \) according to \(\pi \). Now let \(\tau_d := (1, \ldots, d) \in S_d \) be the standard cycle of length \(d \) in \(S_d \) and put

\[
\sigma_{d^t} \equiv \tau_d \# \cdots \# \tau_d \in C_{d^t} \subseteq S_n.
\]

Then the centralizer of \(\sigma_{d^t} \) in \(S_n \) is a wreath product of the cyclic group generated by \(\tau_d \) with \(S_k \) and may be described as

\[
C_{d^t} := C_{S_k}(\sigma_{d^t}) = \left\{ \pi^{(d^t)}(\tau_{d}^{i_1} \# \cdots \# \tau_{d}^{i_k}) \mid \pi \in S_k, i_1, \ldots, i_k \in \mathcal{I} \right\}.
\]

([5, Section 4.1]). With these notations, the remaining part of Theorem 8.23 in [12], transferred to Cl, reads as follows.

Theorem 2.2. Let \(d, k \in \mathbb{N} \) and \(n := dk \). Then

\[
\psi_{d^t} : C_{d^t} \longrightarrow K, \quad \pi^{(d^t)}(\tau_{d}^{i_1} \# \cdots \# \tau_{d}^{i_k}) \longmapsto e^{-(i_1 + \cdots + i_k)}
\]

is a linear representation of \(C_{d^t} \), and \((\psi_{d^t})^{S_k} = \lambda_{d^t} \).

3. Multiplicities

In order to state our main result (Theorem 3.1), we need the notion of a standard Young tableau and its multi major index corresponding to a composition. Let \(n \in \mathbb{N} \) and \(p = p_1, \ldots, p_l \vdash n \). The frame \(R(p) := \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid i \in \mathcal{I}, j \in \mathcal{J} \} \) corresponding to \(p \) may be visualized by its Ferrers diagram, an array of boxes with \(p_1 \) boxes in the first (top) row, \(p_2 \) boxes in the second row and so on. For example, we have

\[R(3,2) \sim \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & \end{array} \]

The images \(1\pi, \ldots, n\pi \) of any permutation \(\pi \in S_n \) may be entered into \(R(p) \) row by row, starting at bottom left and ending at top right. Let SYT\(^p\) be the set of all permutations which are increasing in rows (from left to right) and columns (downwards) when entered into \(R(p) \) in this way. The elements of SYT\(^p\) are called *standard Young tableaux* of shape \(p \). In the above example, the elements of SYT\(^{3,2}\), entered into \(R(3,2) \), are

\[
\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & \end{array}, \quad \begin{array}{ccc} 1 & 2 & 4 \\ 3 & 5 & \end{array}, \quad \begin{array}{ccc} 1 & 3 & 4 \\ 2 & 5 & \end{array}, \quad \begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & \end{array}, \quad \begin{array}{ccc} 1 & 2 & 5 \\ 3 & 4 & \end{array}
\]
Accordingly, we obtain

\[
\text{SYT}^3 = \left\{ \begin{bmatrix} 12345 \\ 45123 \\ 25134 \\ 24135 \\ 34125 \end{bmatrix}, \begin{bmatrix} 12345 \\ 35124 \\ 25134 \\ 24135 \\ 34125 \end{bmatrix}, \begin{bmatrix} 12345 \\ 25134 \\ 24135 \\ 34125 \end{bmatrix}, \begin{bmatrix} 12345 \\ 34125 \end{bmatrix} \right\} \subseteq S_5.
\]

For all \(\pi \in S_n \), \(D(\pi) := \{ i \in \{ n - 1 \} \mid i \pi > (i + 1)\pi \} \) is called the descent set of \(\pi \).

Let \(q = q_1, \ldots, q_k \models n \) and put \(s_j := q_1 + \cdots + q_j \) for all \(j \in \mathbb{N} \cup \{0\} \). Then the multi major index of \(\pi \) corresponding to \(q \) is defined as

\[
\text{maj}_q \pi := m_1, \ldots, m_k \in \mathbb{N}^*,
\]

where

\[
m_j := \sum_{s_{j-1} < i \leq s_j} (i - s_{j-1})\]

for all \(j \in \mathbb{N} \). For \(q = n \), we obtain the ordinary major index \(\text{maj} \pi := \text{maj}_n \pi \) of \(\pi \).

If, additionally, \(r = r_1, \ldots, r_k \in \mathbb{N}^* \), we define

\[
\text{SYT}^r_p := \left\{ \pi \in \text{SYT}^p \mid \forall j \in \mathbb{N} \cdot (\text{maj}_q(\pi^{-1}))_j \equiv r_j \mod q_j \right\}.
\]

Here \((\text{maj}_q(\pi^{-1}))_j \) always denotes the \(j \)-th letter of \(\text{maj}_q(\pi^{-1}) \), for all \(j \in \mathbb{N} \). For arbitrary \(r = r_1, \ldots, r_k \), \(q = q_1, \ldots, q_k \in \mathbb{N}^* \) we write \(r \mid q \) if and only if \(l = k \) and \(r_i \) is a divisor of \(q_i \) for all \(i \in \mathbb{N} \). In this case, we define furthermore the following extension of the number theoretic M"obius function \(\mu \):

\[
\mu(q/r) := \prod_{i=1}^{\lfloor q \rfloor} \mu(q_i/r_i).
\]

Finally, for \(k \in \mathbb{N} \) and \(r = r_1, \ldots, r_k \in \mathbb{N}^* \), we put \(k \ast r := (kr_1), \ldots, (kr_k) \).

Main Theorem 3.1. Let \(d, n \in \mathbb{N} \) such that \(dk = n \). Let \(p \vdash n \). Then we have

\[
(\lambda_{d^k}, \pi^p)_{S_k} = \frac{1}{k!} \sum_{q \vdash k} |C_q| \sum_{r \vdash q} \mu(q/r) \text{SYT}^r_p.
\]

The proof will be given in Section 5. A description of the multiplicity \((\lambda_q, \pi^p)_{S_k} \) for arbitrary \(q \vdash n \) may be obtained from Theorem 3.1 via (3). For \(k \leq 3 \), we obtain the following specializations of Theorem 3.1, the first of which is due to Kraskiewicz and Weyman (see the Remark at the end of this section).

Corollary 3.2. Let \(d \in \mathbb{N} \).

(a) For all \(p \vdash d \), we have \((\lambda_d, \pi^p)_{S_d} = \text{SYT}^p_{d,1} \).

(b) For all \(p \vdash 2d \), we have \((\lambda_{d^2}, \pi^p)_{S_{d^2}} = 1/2(\text{SYT}^p_{d^2,1,1} + \text{SYT}^p_{d^2,2} - \text{SYT}^p_{d^2,1,1}) \).
(c) For all \(p \vdash 3d \), we have

\[
(\lambda_{d,d,d}, \xi^p)_{S_n} = \frac{1}{6} \left(\text{syt}^p_{d,d,d,1,1,1} + 3(\text{syt}^p_{2d,d,2,1} - \text{syt}^p_{2d,d,1,1}) + 2(\text{syt}^p_{3d,3} - \text{syt}^p_{3d,1}) \right).
\]

We will illustrate Corollary 3.2 in the case of \(p = 2.2.2 \). The standard Young tableaux \(\pi \) of shape \(p \) are listed in Table 1 together with their multi major indices in question. The descents of \(\pi^{-1} \) are underlined in each case.

By Corollary 3.2, we obtain \((\lambda_{d}, \xi^{2.2.2})_{S_n} = 0\) and furthermore

\[
(\lambda_{3,3}, \xi^{2.2.2})_{S_n} = \frac{1}{2} (1 + 1 - 0) = 1
\]

and

\[
(\lambda_{2.2.2}, \xi^{2.2.2})_{S_n} = \frac{1}{6} (1 + 3(0 - 1) + 2(1 - 0)) = 0.
\]

For \(p \vdash d \in \mathbb{N} \) and \(\pi \in \text{SYT}^p \), note that \(i \in d-1 \) is a descent of \(\pi^{-1} \) if and only if \(i \) stands strictly above \(i+1 \) in \(\pi \), entered into \(R(p) \). Hence Corollary 3.2 (a) indeed coincides with the original result of Kraskiewicz and Weyman on the Lie character \(\lambda_d \) ([9]).
4. Noncommutative character theory

Let \(n \in \mathbb{N} \). The **descent algebra** \(D_n \) is defined as the linear span of the elements
\[
\delta^D := \sum_{\pi \in S_n} D(\pi) = D \begin{pmatrix} 1 & \cdots & n \end{pmatrix} \text{ in } KS_n.
\]
Due to Solomon ([15]), \(D_n \) is a subalgebra of \(KS_n \), and there exists a certain epimorphism of algebras \(c_n : D_n \to Cl_K(S_n) \), for all \(n \). The direct sum \(KS := \bigoplus_{n \in \mathbb{N}} KS_n \) is a graded algebra with respect to the convolution product \(\ast \) (see [6, 1.3] for a combinatorial description), and \(D := \bigoplus_{n \in \mathbb{N}} D_n \) is a \(\ast \)-subalgebra of \(KS \) (see [12]). In [6], a (noncommutative) \(\ast \)-subalgebra \(B \) of \(KS \) and a \(\ast \)-homomorphism \(c_B : B \to Cl \) are introduced such that \(D \subseteq B \) and \(c_B \) is a subalgebra for all \(n \). Furthermore, a (bilinear) scalar product \((\cdot, \cdot) \) on \(KS \) is defined by
\[
(\pi, \sigma) := \begin{cases} 1 & \pi = \sigma^{-1}; \\ 0 & \pi \neq \sigma^{-1} \end{cases}
\]
for all permutations \(\pi, \sigma \), and it is shown that
\[
(\varphi, \psi) = (c(\varphi), c(\psi))_S
\]
for all \(\varphi, \psi \in B \), where the scalar product on the right hand side is the canonical orthogonal extension of the ordinary scalar products \((\cdot, \cdot)_S \) on \(Cl_K(S_n) \), \(n \in \mathbb{N} \). For any partition \(p \in \mathbb{N}^* \), \(Z^p := \sum_{\pi \in SYT_p} \pi \) is an element of \(B \) such that
\[
c(Z^p) = \zeta^p
\]
is the irreducible character of \(S_n \) corresponding to \(p \). For example, for \(p = 3.2 \), we obtain \(Z^{3.2} = \left(\begin{array}{c} 12345 \\ 45123 \end{array} \right) + \left(\begin{array}{c} 12345 \\ 35124 \end{array} \right) + \left(\begin{array}{c} 12345 \\ 21345 \end{array} \right) + \left(\begin{array}{c} 12345 \\ 25134 \end{array} \right) \). These results provide the following general concept for describing multiplicities: Given an arbitrary character \(\chi \in Cl_K(S_n) \), any inverse image \(\varphi \in B \) of \(\chi \) under \(c \) may be understood as a noncommutative character corresponding to \(\chi \). By (8) and (9), for each such \(\varphi \), it follows that
\[
(\chi, \zeta^p)_S = (c(\varphi), c(Z^p))_S = (\varphi, Z^p).
\]
The right-hand side of (10) gives different combinatorial descriptions of the multiplicity on the left-hand side, according to the choice of \(\varphi \), simply by the definition of \(Z^p \) and the scalar product on \(B \).

5. Klyachkos’s idempotent and Ramanujan sums

In the sequel, following the concept described in Section 4, an inverse image of \(\lambda_{d^k} \) under \(c \) in \(D \) is constructed. It leads to a short proof of our main result Theorem 3.1, by means of (10).
Let \(n \in \mathbb{N} \). We put \(\kappa_n(x) := \sum_{\pi \in \mathcal{C}_n} x^{\text{maj}\pi} \) (\(x \) a variable) and

\[
M_{n,i} := \sum_{\pi \in \mathcal{C}_n \mod n} \pi \in \mathcal{D}_n
\]

for all \(i \in \mathbb{N}_0 \). Then, up to the factor \(1/n \), \(\kappa_n(e_n) = \sum_{i=1}^n e_n^i M_{n,i} \in \mathcal{D}_n \) is a Lie idempotent, that is, \(\kappa_n^2 = n \kappa_n \) and \(L_n(V) = \kappa_n T_n(V) \). This remarkable result is due to Klyachko ([8]).

Lemma 5.1. Let \(n, i \in \mathbb{N} \) and \(d \) be the order of \(e_n^i \). Then we have

\[
\kappa_n(e_n^i) = \kappa_d(e_n^i) \cdot \cdots \cdot \kappa_d(e_n^i).
\]

In particular, \(c(\kappa_n(e_n^i)) = c(\kappa_n) \).\[/text]

The main part of the preceding lemma is a special case of [10, Proposition 4.1], while the additional claim on the \(c \)-image follows from [7, Proposition 1]. For \(n, m \in \mathbb{N} \), we denote by \(\gcd(n, m) \) the greatest common divisor of \(n \) and \(m \).

Corollary 5.2. Let \(n \in \mathbb{N} \) and \(i, j \in \mathbb{N}_0 \) such that \(\gcd(i, n) = \gcd(j, n) \). Then

\[
c(M_{n,i}) = c(M_{n,j}).
\]

Proof. As \(\gcd(i, n) = \gcd(j, n) \), we can find an integer \(m \in \mathbb{N} \) such that \(i \equiv jm \) modulo \(n \) and \(\gcd(m, n) = 1 \). For all \(k \in \mathbb{N} \), we have \(\gcd(km, n) = \gcd(k, n) \) and hence \(c(\kappa_n(e_n^k)) = c(\kappa_n(e_n^{mk})) \), by Lemma 5.1. It follows that

\[
nc(M_{n,i}) = c \left(\sum_{i=1}^n \sum_{k=1}^n (e_n^{i-k})^k M_{n,i} \right) = c \left(\sum_{k=1}^n e_n^{-ik} \kappa_n(e_n^k) \right)
\]

\[
= c \left(\sum_{k=1}^n e_n^{-ik} \kappa_n(e_n^{mk}) \right) = c \left(\sum_{i=1}^n \sum_{k=1}^n (e_n^{i-k})^k M_{n,i} \right)
\]

\[
= c \left(\sum_{i=1}^n \sum_{k=1}^n (e_n^{i-k})^k M_{n,i} \right) = nc(M_{n,i}). \quad \square
\]

Let \(n, m \in \mathbb{N} \). The Ramanujan sum corresponding to \(n \) and \(m \) is defined by

\[
\varrho(n, m) := \sum e_m,
\]

where the sum is taken over all primitive \(n \)-th roots of unity \(\epsilon \). In the particular case of \(m = 1 \) (\(m = n \), respectively), \(\varrho(n, m) \) yields the Möbius function \(\mu(n) = \varrho(n, 1) \).
(Euler’s function $\varphi(n) = \varphi(n, n)$, respectively). We write $x \mid m$, if $x \in \mathbb{N}$ is a divisor of m, and put

$$ R(n, m) := \sum_{x \mid m} \varphi(n, x)\varphi(m/x, 1). $$

Now, for all $d, k \in \mathbb{N}$ and $p = p_1, \ldots, p_l \in \mathbb{N}^+$, let

$$ M_d(k) := \sum_{y \mid dk} R(dk/y, d)M_{dk,y} $$

and

$$ M_d(p) := M_d(p_1) \cdot \cdots \cdot M_d(p_l). $$

Note that $M_d(p) \in \mathcal{D}$, as \mathcal{D} is closed under the convolution product.

Lemma 5.3. For all $d, k \in \mathbb{N}$, we have

$$ \lambda_{d^k} = c \left(\frac{1}{k!} \sum_{\pi \in S_k} \frac{1}{d^{\ell(\pi)}} M_d(z(\pi)) \right). $$

(Recall that $z(\pi)$ denotes the cycle partition of π for any permutation π.)

Proof. We write

$$ z(\pi; i_1, \ldots, i_k) := z(\pi^{[d^k]}(\tau_1^{i_1} \cdots \tau_k^{i_k})) $$

for all $\pi \in S_k, i_1, \ldots, i_k \in d - 1 \cup \{0\}$. By Theorem 2.2, we then have

$$ \lambda_{d^k} = \frac{1}{|C^{d^k}|} \sum_{\varphi \in C^{d^k}} \left(\sum_{\varphi \in C^{d^k}} \psi_{d^k}(\varphi) \right) \text{ch}_q $$

$$ = \frac{1}{k!} \sum_{\pi \in S_k} \frac{1}{d^\ell} \sum_{i_1, \ldots, i_k = 0}^{d-1} e_d^{-\sum_{i_1}^{i_k}} \text{ch}_{z(\pi; i_1, \ldots, i_k)}. $$

By induction on the number $z = |z(\pi)|$ of cycles in $\pi \in S_k$, we show that

$$ \frac{1}{d^k} \sum_{i_1, \ldots, i_k = 0}^{d-1} e_d^{-\sum_{i_1}^{i_k}} \text{ch}_{z(\pi; i_1, \ldots, i_k)} = c \left(\frac{1}{d^k} M_d(z(\pi)) \right), $$

which implies our claim. We will use some basic facts about cycle partitions of elements of C^{d^k} which can be found in [5, 4.2]. Let $z = 1$. Then $\pi \in S_k$ is a long
cycle. Putting \(\eta := \varepsilon_{kd} \) and applying [5, 4.2.17], Lemma 5.1 and Corollary 5.2, we obtain

\[
\frac{1}{d^k} \sum_{i_1, \ldots, i_k = 0}^{d-1} \varepsilon_d^{\sum_i i_i} \chi_{i}(\sigma_i^{j_1, \ldots, j_k}) = \frac{1}{d} \sum_{x/d} \varepsilon_d^{i} \chi_{x}(\tau_{i}^{j_2}) = \frac{1}{d} \sum_{x/d} \varepsilon(d/x, 1) \chi_{x}(\tau_{i}^{j_2}) = c \left(\frac{1}{d} \sum_{x/d} \varepsilon(d/x, 1) \chi_{x}(\tau_{i}^{j_2}) \right) = c \left(\frac{1}{d} \sum_{y/d} M_{dk}^{(y)} R(dk/y, d) \right) = c(M_d(k)/d).
\]

Now let \(z > 1 \), say, \(\pi = \tilde{\pi} \sigma \) for a cycle \(\sigma \) of length \(l \) in \(\pi \). Then we have, by [5, 4.2.19], (2) and our induction hypothesis,

\[
\frac{1}{d^{k-1}} \sum_{i_1, \ldots, i_{k-1} = 0}^{d-1} \varepsilon_d^{\sum_i i_i} \chi_{i}(\sigma_i^{j_1, \ldots, j_{k-1}}) = \left(\frac{1}{d^{k-1}} \sum_{i_1, \ldots, i_{k-1} = 0}^{d-1} \varepsilon_d^{\sum_i i_i} \chi_{i}(\sigma_i^{j_1, \ldots, j_{k-1}}) \right) \ast \left(\frac{1}{d} \sum_{y/d} M_{dk}^{(y)} (z(\tilde{\pi})) \right) = c \left(\frac{1}{d} M_d(z(\pi)) \right).
\]

This completes the proof of (*). \(\square \)

The inverse image of \(\lambda_d \) under \(c \) constructed in the preceding lemma may be simplified by means of a short analysis of the numbers \(R(n, m) \). This will be done in three steps.

Proposition 5.4. Let \(n_1, n_2, m_1, m_2 \in \mathbb{N} \) such that

\[
\gcd(n_1, n_2) = \gcd(m_1, m_2) = \gcd(n_1, m_1) = \gcd(n_2, m_1) = 1.
\]

Then we have \(R(n_1n_2, m_1m_2) = R(n_1, m_1)R(n_2, m_2) \).

Proof. By [4, Theorem 67], the Ramanujan sums have the following factorizing property: \(\varphi(a_1a_2, b) = \varphi(a_1, b)\varphi(a_2, b) \) for all \(a_1, a_2, b \in \mathbb{N} \) such that \(\gcd(a_1, a_2) = 1 \). Furthermore, we have \(\varphi(a, b_1b_2) = \varphi(a, b_1) \) for all \(a, b_1, b_2 \in \mathbb{N} \) such that \((a, b_2) = 1 \),
as in this case taking the \(b_2 \)-th power induces an automorphism of the group of \(a \)-th roots of unity. These two observations imply that

\[
R(n_1, n_2, m_1, m_2) = \sum_{x_1 \mid n_1} \sum_{x_2 \mid n_2} \phi(n_1, x_1, x_2) \phi\left(\frac{m_1}{x_1}, \frac{m_2}{x_2}, 1\right)
\]

\[
= \sum_{x_1 \mid n_1} \sum_{x_2 \mid n_2} \phi(n_1, x_1) \phi(n_2, x_1, x_2) \phi\left(\frac{m_1}{x_1}, 1\right) \phi\left(\frac{m_2}{x_2}, 1\right)
\]

\[
= \sum_{x_1 \mid n_1} \phi(n_1, x_1) \phi\left(\frac{m_1}{x_1}, 1\right) \sum_{x_2 \mid n_2} \phi(n_2, x_2) \phi\left(\frac{m_2}{x_2}, 1\right)
\]

\[
= R(n_1, m_1) R(n_2, m_2). \tag*{\square}
\]

Let \(\mathbb{P} \) be the set of all prime numbers.

Proposition 5.5. For all \(a, b \in \mathbb{N}_0 \) and \(p \in \mathbb{P} \), we have

\[
R(p^a, p^b) = \begin{cases}
\mu(p^{a-b}) p^b & b \leq a; \\
0 & b > a.
\end{cases}
\]

Proof. For all \(n, m \in \mathbb{N} \), the Ramanujan sum corresponding to \(n \) and \(m \) may be expressed in terms of the Möbius and the Euler function as follows:

\[
\phi(n, m) = \mu(n / \gcd(n, m)) \frac{\phi(n)}{\phi(n / \gcd(n, m))}
\]

([4, Theorem 272]). Let \(c := \min\{a, b\} \) and \(d := \min\{a, b - 1\} \). Then

\[
R(p^a, p^b) = \sum_{i=0}^{b} \phi(p^a, p^i) \phi(p^{b-i}, 1)
\]

\[
= \phi(p^a, p^b) - \phi(p^a, p^{b-1})
\]

\[
= \mu(p^{a-c}) \frac{\phi(p^a)}{\phi(p^{a-c})} - \mu(p^{a-d}) \frac{\phi(p^a)}{\phi(p^{a-d})}
\]

and hence \(R(p^a, p^b) = 0 \) for \(b > a \), as \(c = d = a \) in this case. Let \(b \leq a \). Then we have \(c = b \) and \(d = b - 1 \), that is,

\[
R(p^a, p^b) = \mu(p^{a-b}) \frac{\phi(p^a)}{\phi(p^{a-b})} - \mu(p^{a-b+1}) \frac{\phi(p^a)}{\phi(p^{a-b+1})}.
\]

For \(b < a - 1 \), this shows \(R(p^a, p^b) = 0 \) as asserted. For \(b = a - 1 \) it follows that \(R(p^a, p^b) = -\frac{\phi(p^{b+1})}{\phi(p)} = -p^b \), while, for \(b = a \), we may conclude that \(R(p^a, p^b) = \phi(p^a) - \phi(p^b) / \phi(p) = p^b \).

\tag*{\square}
Lemma 5.6. For all \(n, m \in \mathbb{N} \), we have
\[
R(n, m) = \begin{cases}
\mu(n/m)m & m \mid n; \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. Choose \(a_p, b_p \in \mathbb{N}_0 \) for all \(p \in \mathbb{P} \) such that \(n = \prod_{p \in \mathbb{P}} p^{a_p} \) and \(m = \prod_{p \in \mathbb{P}} p^{b_p} \).
Applying Propositions 5.4 and 5.5 we obtain
\[
R(n, m) = \prod_{p \in \mathbb{P}} R(p^{a_p}, p^{b_p})
= \begin{cases}
\prod_{p \in \mathbb{P}} \mu(p^{a_p-b_p})p^{b_p} & \forall p \in \mathbb{P} : b_p \geq a_p; \\
0 & \text{otherwise}
\end{cases}
= \begin{cases}
\mu(n/m)m & m \mid n; \\
0 & \text{otherwise}.
\end{cases}
\]

Corollary 5.7. Let \(d, k \in \mathbb{N} \). Then \(M_d(k) = d \sum_{y \mid k} \mu(k/y)M_{dk/y} \).

Proof. Let \(y \) be a divisor of \(dk \). Then Lemma 5.6 implies that
\[
R(dk/y, d) = \begin{cases}
\mu(dk/dy)d & d \mid dk/y; \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
\mu(k/y)d & y \mid k; \\
0 & \text{otherwise}.
\end{cases}
\]

We are now in a position to give the proof of the Main Theorem 3.1.

Proof of the Main Theorem 3.1. By Lemma 5.3 and (10), we have
\[
(\lambda_{d^k}, \xi^p)^{S_k} = \frac{1}{k!} \sum_{z \in S_k} \frac{1}{d^{[z(\pi)]}} (M_d(z(\pi)), Z^p).
\]
But, for \(\pi \in S_k \) and \(q = q_1, \ldots, q_k := z(\pi) \), we may conclude from Corollary 5.7 that
\[
\frac{1}{d^{[z(\pi)]}} (M_d(z(\pi)), Z^p) = \frac{1}{d^k} (M_d(q_1) \cdot \cdots \cdot M_d(q_k), Z^p)
= \sum_{r_1 | q_1} \cdots \sum_{r_k | q_k} \mu(q_1/r_1) \cdots \mu(q_k/r_k) (M_{d_{q_1, r_1}} \cdot \cdots \cdot M_{d_{q_k, r_k}}, Z^p)
= \sum_{r | q} \mu(q/r) (M_{d_{q_1, r_1}} \cdot \cdots \cdot M_{d_{q_k, r_k}}, Z^p).
\]
This completes the proof, as \((M_{d_{q_1, r_1}} \cdot \cdots \cdot M_{d_{q_k, r_k}}, Z^p) = \text{syt}_{q,r}^p\) for all \(r \mid q \), simply by definition of the scalar product \((\cdot, \cdot)\) and the convolution product \(\bullet\) in [6, 1.3].
References

Mathematical Institute
24–29 St Giles
Oxford OX1 3LB
UK
e-mail: schocker@maths.ox.ac.uk