J. Aust. Math. Soc.  74 (2003), 201-234
Theta functions on Hermitian symmetric domains and Fock representations

Min Ho Lee
  Department of Mathematics
  University of Northern Iowa
  Cedar Falls, Iowa 50614

One way of realizing representations of the Heisenberg group is by using Fock representations, whose representation spaces are Hilbert spaces of functions on complex vector space with inner products associated to points on a Siegel upper half space. We generalize such Fock representations using inner products associated to points on a Hermitian symmetric domain that is mapped into a Siegel upper half space by an equivariant holomorphic map. The representations of the Heisenberg group are then given by an automorphy factor associated to a Kuga fiber variety. We introduce theta functions associated to an equivariant holomorphic map and study connections between such generalized theta functions and Fock representations described above. Furthermore, we discuss Jacobi forms on Hermitian symmetric domains in connection with twisted torus bundles over symmetric spaces.
Download the article in PDF format (size 264 Kb)

TeXAdel Scientific Publishing ©  Australian MS