Legendre polynomials and series for $1/\pi$

James Wan*

One of Ramanujan’s surprising discoveries [5] is series of the form

$$\sum_{n=0}^{\infty} h_n (a_0 n + b_0) z_0^n = \frac{1}{\pi}, \quad (1)$$

where h_n is a hypergeometric term, that is h_{n+1}/h_n is a rational function of n. More amazingly, some series contain rational summands, for example,

$$\sum_{n=0}^{\infty} \binom{2n}{n}^3 \left(2n + \frac{1}{2}\right)(-2^{-6})^n = 1/\pi.$$

In the language of hypergeometric series, (1) says a linear combination of a suitable $3F2$ and its derivative near 0 gives $1/\pi$. Research into (1) continues, one aim being to replace h_n by more general sequences.

Proofs for (1) are just as fascinating as the series themselves, involving mainly three different fields, all of which are used in our work:

- Hypergeometric series: special $3F1$s, such as the elliptic integral K, can be evaluated in closed form at certain algebraic arguments, and whose square is a $3F2$ via Clausen’s identity;
- Modular forms: parametrise components in (1) (such as z_0) in terms of modular forms, and observe that modular forms of the same weight are related by algebraic equations;
- Experimental mathematics: empirical discovery by integer relation programs like PSLQ, and automatic proof and identity generation using Celine’s and Zeilberger’s algorithms.

In 2002, T. Sato extended h_n to include Apéry-like sequences u_n which subsume the hypergeometric terms, and which satisfy the recursion

$$(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}, \quad u_{-1} = 0, \quad u_0 = 1.$$

It is believed that there are 14 triplets $(a, b, c) \in \mathbb{Z}^3$ that produce integer u_n for all n, and these sequences are studied for their arithmetic properties, for example, Apéry used them in his irrationality proofs of $\zeta(2)$ and $\zeta(3)$. Subsequent work of H.H. Chan, W. Zudilin et al. [2] extended h_n to the product of a hypergeometric term and an Apéry-like sequence. More recently, Z.W. Sun conjectured [6] that h_n may also be a hypergeometric term times $P_\alpha_n(x_0)$ for $\alpha \in \{1, 2, 3\}$; here $P_n(x)$ denotes the Legendre polynomial.

James Wan was awarded the B.H. Neumann Prize for best student presentation at the annual meeting of the AustMS in 2011. This extended abstract is an invited contribution to the Gazette.

The author’s research is supported by the Australian Research Council.

*CARMA, The University of Newcastle, NSW 2308. Email: james.wan@newcastle.edu.au
The all-important Clausen’s identity follows from Bailey’s identity for a particular Appell’s hypergeometric function. In the 1950s, F. Brafman used Bailey’s identity to prove some unusual (but nearly forgotten) generating functions for Legendre polynomials [1], which may be manipulated via modular and hypergeometric machinery [3] to validate Sun’s observations for $\alpha = 1$; moreover, in the same work we provide a recipe for producing such series at will.

In our proof of the $\alpha = 2$ and $\alpha = 3$ cases, we successfully generalised Bailey’s identity to encompass all Apéry-like sequences, and produced the very general generating function [4]:

$$
\sum_{n=0}^{\infty} u_n x^n \sum_{n=0}^{\infty} u_n y^n = \frac{1}{1 - cxy} \sum_{n=0}^{\infty} u_n \sum_{m=0}^{n} \binom{n}{m}^2 g(x, y)^m g(y, x)^{n-m},
$$

(2)

where $g(x, y) = x(1 - ay + cy^2)/(1 - cxy)^2$. Notably, (2) was discovered, and then proven, experimentally with significant computer input as compared to the need for human intervention (the key step in the proof involves using a computer to find a partial differential equation which annihilates both sides). When used in conjunction with a theorem of H.M. Srivastava, (2) gives new connections between Legendre polynomials (and other special functions) and Apéry-like sequences, while at the same time offers the most general theory of series for $1/\pi$. In particular, it allows h_n to be an Apéry-like sequence multiplied by a Legendre polynomial. An example of this, with rational summands, is

$$
\sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \left(-\frac{1}{8} \right)^{\frac{k}{j}} \right] P_n \left(\frac{5}{3\sqrt{3}} \right) \left(\frac{4}{3\sqrt{3}} \right)^n = \frac{9\sqrt{3}}{2\pi}.
$$

References

James studied mathematics and chemistry at The University of Melbourne, and graduated in 2008 with Honours in pure mathematics. He is currently studying for a PhD on computer-assisted analysis and number theory under the supervision of Jon Borwein and Wadim Zudilin.