A correspondence note on Myerson’s
‘Irrationality via well-ordering’

Scott Duke Kominers∗

I thoroughly enjoyed Myerson’s article [2] on methods of proving irrationality via the well-ordering principle. In this note, I point out a second method by which the well-ordering principle may be used to prove Myerson’s Theorem 2. This approach is a generalisation of MacHale’s recent proof [1] that \(\sqrt{2} \) is irrational.

Theorem 1. For \(m \in \mathbb{N} \), \(\sqrt{m} \) is irrational if it is not an integer.

Proof. First, we prove the result for squarefree \(m \). We consider the set

\[\{ a + b \mid a, b \in \mathbb{N}, a^2 = mb^2 \}. \]

By the well-ordering principle for \(\mathbb{N} \), this set has a minimal element \(a_0 + b_0 \). If \(m \) is squarefree, the condition \(a_0^2 = mb_0^2 \) guarantees that \(m \) divides \(a_0 \). Thus, \(a_0 = m\ell \) for some \(\ell \in \mathbb{N} \). But then, \(m^2\ell^2 = a_0^2 = mb_0^2 \), from which it follows that \(m \) divides \(b_0 \). Writing \(b_0 = mr \), we have \(m^3r^2 = m^2\ell^2 \). It follows that \(mr^2 = \ell^2 \).

As \(a_0 + b_0 = m(\ell + r) \), this is a contradiction to the minimality of \(a_0 + b_0 \).

Now, if \(m \) is not squarefree, we may write \(m = m_1^2m_0 \) for \(m_0 \) squarefree. We have \(\sqrt{m_0} \) irrational by the earlier argument, so \(\sqrt{m} = \sqrt{m_1^2m_0} = m_1\sqrt{m_0} \) is irrational, as well.

References
