
Norman Do∗

Welcome to the Australian Mathematical Society Gazette’s Puzzle Corner. Each
issue will include a handful of entertaining puzzles for adventurous readers to try.
The puzzles cover a range of difficulties, come from a variety of topics, and require
a minimum of mathematical prerequisites to be solved. And should you happen
to be ingenious enough to solve one of them, then the first thing you should do is
send your solution to us.

In each Puzzle Corner, the reader with the best submission will receive a book
voucher to the value of $50, not to mention fame, glory and unlimited bragging
rights! Entries are judged on the following criteria, in decreasing order of impor-
tance: accuracy, elegance, difficulty, and the number of correct solutions submit-
ted. Please note that the judge’s decision — that is, my decision — is absolutely
final. Please e-mail solutions to N.Do@ms.unimelb.edu.au or send paper entries to:
Gazette of the AustMS, Birgit Loch, Department of Mathematics and Computing,
University of Southern Queensland, Toowoomba, Qld 4350, Australia.

The deadline for submission of solutions for Puzzle Corner 9 is 1 November 2008.
The solutions to Puzzle Corner 9 will appear in Puzzle Corner 11 in the March
2009 issue of the Gazette.

Lucky lottery
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Fifty players take part in a lottery in which they
must write down the numbers from 1 up to 50 in
some order. Fifty balls, numbered from 1 up to
50, are drawn one by one from a barrel to provide
the winning sequence. The players compare this to
their own sequences and earn one dollar for each
number which matches. Furthermore, the jackpot

is awarded to any player who is lucky enough to have the winning sequence itself.
Given that each player wins a different amount of money, prove that at least one
of them must have won the jackpot.

Ultramagic square

A 9 × 9 grid is filled with the numbers from 1 up to 81. If the product of the
numbers in the kth row is equal to the product of the numbers in the kth column
for all k, then we say that the square is ultramagic. Does there exist an ultramagic
square?
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Cakes and boxes

A triangular cake and a triangular box are congruent, but are mirror images of
each other. We would like to cut the cake into two pieces which can fit together
in the box without turning either piece over.

(a) Show that this is possible if one angle of the triangle is three times as large
as another.

(b) Show that this is possible if one angle of the triangle is obtuse and twice as
large as another.
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Golden circle

Let P1 be a point on a circle whose cir-
cumference is equal to the golden ratio φ =
(1 +

√
5)/2. Let P2 be the point on the cir-

cle which is one unit of arc length along from
P1 in the clockwise direction. Let P3 be the
point on the circle which is one unit of arc
length along from P2 in the clockwise direc-
tion, and so on. Suppose that you mark the
points P1, P2, . . . , Pn for some positive inte-
ger n. Prove that if Pi and Pj are adjacent
marked points on the circle, then |i− j| is a
Fibonacci number.

Robots in mazes

A maze is an 8 × 8 chessboard with walls along the four sides and between some
pairs of adjacent squares. A robot trapped in the maze can walk from one square
to an adjacent one as long as there is no wall between them. If the robot can visit
every square on the chessboard from some initial position, then the maze is called
good and otherwise, it is called bad.

1. Are there more good mazes or bad mazes?

A proper maze is a good maze which has one square marked START and another
one marked FINISH. A program for the robot is a finite sequence of moves: UP,
DOWN, LEFT or RIGHT. A robot will move to the adjacent square in the given
direction unless there is a wall blocking it, in which case, it remains on the same
square.

2. Suppose that the robot begins on the square marked START. Does there
exist a program which will eventually lead the robot to the square marked
FINISH, no matter which proper maze is given?
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Solutions to Puzzle Corner 7

The $50 book voucher for the best submission to Puzzle Corner 7 is awarded to
Jamie Simpson.

Physicists and chemists

Solution by Warren Brisley: Each mathematician has a liar to their left, so there
are at least N liars. However, each physicist has a truth-teller to their left, so there
are at least N truth-tellers. There are 2N people seated around the table, so there
must be precisely N liars and N truth-tellers. Since the number of liars among
the mathematicians and the number of liars among the physicists are equal, N
must be even.

Sums of alternating sums

Solution by Tony Watts: Consider any subset X ⊆ {1, 2, . . . , n} which does not
include n as an element and suppose that its alternating sum is s. Now consider
the subset X ′ = X ∪ {n} with alternating sum s′. Note that, in the expressions
for the alternating sums of X and X ′, all numbers apart from n will appear with
opposite signs. Since n appears with a positive sign in the expression for the
alternating sum of X ′, it follows that s + s′ = n.

The 2n subsets of {1, 2, . . . , n} consist of 2n−1 which do not include n as an ele-
ment and 2n−1 which do include n as an element. Furthermore, they form 2n−1

pairs (X, X ′) whose sum of alternating sums is precisely n. Hence, the sum of the
alternating sums over all subsets of {1, 2, . . . , n} is n2n−1.

Rational or irrational?

Solution by David Angell: If Ak was rational, then it would have an eventually
periodic decimal expansion. But it is clear that Ak contains arbitrarily long strings
of zeros, because 10nk appears in the decimal expansion of Ak for every positive
integer n. So the decimal expansion would consist entirely of zeros from some
point onwards. Since this is not the case, there is no value of k for which Ak is
rational.

David also points out that this is a special case of the following theorem of Kurt
Mahler:

Let f be a non-constant polynomial with rational coefficients such that f(k) is
a positive integer for all positive integers k. Let A be the real number between
0 and 1 formed by writing f(1), f(2), f(3), . . . in order after the decimal point.
Then A is transcendental and not a Liouville number.

Polygons and rectangles

Solution by Dave Johnson: Given a convex polygon P of area 1, let A and C be
points of P whose distance is maximal. Let a and c be the lines through A and
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C, respectively, perpendicular to AC. Now let B and D be points of P, one on
each side of AC and at maximal distance from it. Let b and d be the lines through
B and D, respectively, parallel to AC. Denote the quadrilateral ABCD by Q
and the rectangle bounded by the lines a, b, c, d by R. The maximality conditions
and the convexity of P ensure that Q ⊆ P ⊆ R and, by construction, we have
area(Q) = 1

2area(R). Finally, we conclude that

area(R) = 2 × area(Q) ≤ 2 × area(P) = 2.

We note that this proof works for any plane convex set P of area 1. Furthermore,
the constant 2 cannot be replaced by a smaller number, as evidenced by taking P
to be the isosceles right-angled triangle with hypotenuse of length 2.

The broken calculator

Solution by Jamie Simpson: We will prove the stronger result that every number
of the form

√
p/q, where p and q are relatively prime positive integers, can be

produced on the calculator. The proof will proceed by induction on p + q.

Since cos 0 =
√

1/1, the statement holds when p + q = 2. Now suppose that it
holds for all p + q < n and consider

√
a/b where a + b = n. Note that

tan ◦ cos−1 ◦ sin ◦ tan−1
√

a/b = tan ◦ cos−1
√

a/(a + b) =
√

b/a.

So we may assume, without loss of generality, that b > a. By the induction hy-
pothesis, we can produce

√
a/(b − a) on the calculator so we can also produce the

number
sin ◦ tan−1

√
a/(b − a) =

√
a/b.

The desired result now follows by induction.

Chessboard puzzles

Solution based on work submitted by Gerry Myerson:

(1) First, we prove the following lemma: if ABCD is any square and P a point
in the plane of the square, then PA2+PC2 = PB2+PD2. After translation,
rotation and dilation, we can assume that ABCD is the unit square in the
first quadrant of the Cartesian plane. So if P = (x, y), then one side of the
equation is [x2 + y2] + [(x − 1)2 + (y − 1)2] and the other is [x2 + (y − 1)2] +
[(x − 1)2 + y2], both of which are equal.
Now consider the chessboard divided into sixteen 2 × 2 blocks in the natural
way. Such a block consists of four unit squares, with two diagonally opposite
ones black and the other two white. Therefore, the result follows by applying
the above lemma on the centres of these four squares and summing up over
the sixteen 2 × 2 blocks.

(2) The smallest possible score is 9 which can be achieved by labelling the squares
1 to 8 across the top row, 9 to 16 across the second row, and so on, down
to 57 to 64 along the bottom row. To see that it is impossible to do better,
note that one can travel from the square labelled 1 to the square labelled
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64 in at most 7 king moves. In particular, there is a path from one to the
other which passes through two squares which share a common side or vertex
whose labels have a difference of at least (64 − 1)/7 = 9.

(3) Consider labelling the squares of the chessboard in the following two ways.

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2

2 3 1 2 3 1 2 3

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

In either case, the placement of a 3×1
rectangle will cover one square of each
label. In both diagrams, there are
21 squares labelled 1, 22 squares la-
belled 2 and 21 squares labelled 3. It
follows that the 1 × 1 square must be
placed on one of the squares which is
labelled 2 in both diagrams. There-
fore, the 1 × 1 square must be placed
on one of the four shaded squares. In
this case, the tiling is given by the
following diagram and its rotations.

Norman is a PhD student in the Department of Math-
ematics and Statistics at The University of Melbourne.
His research is in geometry and topology, with a par-
ticular emphasis on the study of moduli spaces of al-
gebraic curves.


