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Pantographic polygons

John Miller∗ and Emanuel Strzelecki∗∗

Abstract

Necessary and sufficient conditions are given for a polygon to be pantographic.
The property is held by all regular polygons and by many nonregular polygons
having an even number of sides, but by no polygons having an odd number
of sides. Many processes are shown by which new pantographic polygons can
be constructed from old, including a process of adjunction of polygons.

In Euclidean plane geometry, let Ω = PQRS be any nondegenerate plane quadri-
lateral, and let F, G, H, I be the midpoints of the successive sides QR, RS, SP,
PQ. Then Λ := FGHI is a parallelogram; for each pair of opposite sides is parallel
to a diagonal of Ω.

The construction is reversible: if Λ := FGHI is any parallelogram and P any point
in the plane (or even outside the plane), then drawing segments PQ, QR, RS with
midpoints I, F, G results in H being the midpoint of SP. Thus the set Q(Λ) of
quadrilaterals having the vertices of Λ as the midpoints of their sides (taken in
order in both cases) is doubly-infinite. We call Q(Λ) the pantograph of Λ, and
its members the quadrilaterals generated by Λ. The construction was described in
some detail in [1] and [2]. Unfortunately there are problems of degeneracy. Even
if Λ is not degenerate, Ω may be so, and vice versa.

What other plane polygons besides parallelograms generate polygons in this way?

Definition 1. We shall say that a polygon Λ is pantographic if, when all its ver-
tices are taken as the midpoints of the segments of a polygonal arc in order, it
causes this polygonal arc to be closed, that is, to be itself a polygon. We then call
this a generated polygon of Λ. The order of any polygon is the number of its sides.

If the construction of a generated polygon starts by using initially a point P and a
vertex V of Λ (that is, if the first drawn segment PQ say has midpoint V), call it a
[P, V]-construction. Note that P and V determine the generated polygon uniquely.
Note also that if for all possible P a [P, V]-construction results in a polygon, then
the same is true of [P, W]-constructions for each other vertex W of Λ. So in testing
to see if a polygon is pantographic, any vertex may be chosen as first vertex. Note
our verbal distinction between a polygonal arc L = A1A2 . . .Am, from A1 to Am,
and a polygon Λ = A1A2 . . .Am, having a last side AmA1. We shall show that the
property of being pantographic is possessed by all regular 2n-gons, and by many
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non-regular 2n-gons as well, but by no polygons of odd order. We give several
methods of finding new pantographic polygons from old.

In this paper we do not assume that the polygon Λ is convex or non-selfintersecting,
but (as a matter of convenience rather than necessity) we do assume initially that
Λ is nondegenerate, that is, no three vertices are collinear, so that all vertices are
distinct and all sides have positive length. On the other hand the generated poly-
gons may be degenerate, through failure of one or more of these conditions. There
are many forms of degeneracy which can arise when the initial point P is ill chosen,
resulting in a count of the apparent number of vertices or sides being less than
the order of Λ, by some sides having length zero, or by pairs of non-consecutive
vertices coinciding, or some vertices being collinear. See Figure 1.
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Figure 1. Examples of regular 2n−gons with degenerate
generated polygons of k apparent sides.

It can be proved that: For any n > 2 and any k satisfying 2n − [2n/3] ≤ k ≤ 2n − 1
there exists a pantographic 2n-gon with a generated polygon having k apparent
sides, that is, having 2n − k sides of zero length.

For nondegenerate cases the order of any generated polygon equals the order of Λ.
Any degenerate case is the limit of a sequence of nondegenerate cases: for a rigor-
ous discussion of this for quadrilaterals, see [1].

As we shall see, for some given polygons M it can happen that a generated polygon
arises by this construction for certain choices of starting pair P, V but not for
others: we do not call these polygons M pantographic. But we can still use the
notation Q(M) for the set of generated polygons, which is possibly empty. For
example, Q(M) is empty when M is a trapezium which is not a parallelogram. We
show in fact that the cardinality of Q(M) can only be 0, 1 or infinity.

We start by formulating an analytic version of Definition 1 which is less hampered
by considerations of degeneracy, and which leads to necessary and sufficient con-
ditions and easy proofs of ensuing results. Let an arbitrary origin O be taken in
the plane and for any point P write P for its position vector OP.

Definition 2. Let Λ = A1A2 . . .Am be a nondegenerate polygon of m vertices Aj

and sides AjAj+1(Am+1 = A1), and let X1X2 . . .Xm be a polygonal arc such that

Aj = 1
2 (Xj + Xj+1) (j = 1, 2, . . . , m − 1) .
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If also Am = 1
2 (Xm + X1) then the polygon Ω = X1X2 . . .Xm is said to be gener-

ated by Λ. If Ω is a generated polygon for every choice of point X1 in the plane,
then Λ is said to be pantographic.

The definition is independent of the choice of origin O. The earlier remarks show
that a quadrilateral is pantographic if and only if it is a nondegenerate parallelo-
gram.

Theorem 1. No polygon Λ of odd order is pantographic. Every polygon of odd
order ≥ 3 has a unique generated polygon.

Proof. Let Λ be as above. The system of equations

Aj = 1
2 (Xj + Xj+1) (j = 1, 2, . . . , m), Xm+1 = X1 (1)

has to be solved. Let m be odd. Adding all equations gives

A1 + A2 + · · · + Am = X1 + X2 + · · · + Xm . (2)

Adding the odd-numbered equations gives

2(A1 + A3 + · · · + Am) = X1 + X2 + · · · + Xm + X1. (3)

Therefore X1 has a determined value, X1 = A1 − A2 + A3 − · · · + Am. Writing
Xj+1 = 2Aj − Xj to find successive Xj , we end up with

Xm = 2(Am−1 − Am−2 + Am−3 − · · · + (−1)mA1) + X1

= − 2(X1 − Am) + X1 ,

that is, Am = 1
2 (Xm + X1); thus Ω := X1X2 . . .Xm is a generated polygon of Λ,

and clearly it is the unique solution of (1).

Corollary 1. If Λ is a regular polygon of odd order, the unique generated polygon
is the regular polygon circumscribing Λ symmetrically.

Theorem 2. A nondegenerate polygon of even order Λ = A1A2 . . .A2k is panto-
graphic if and only if

A1 + A3 + A5 + · · · + A2k−1 = A2 + A4 + A6 · · · + A2k . (4)

Proof. Assume that Λ is pantographic and that Ω = X1X2 . . .X2k is any generated
polygon. Then (1) holds with m = 2k, and hence (2) holds. In place of (3) we
get (4) by a similar calculation, but X1 can be arbitrary.

Conversely, assume (4). Then it is easily verified that for any X1 the points defined
by

Xj = 2(−1)j [A1 − A2 + A3 − · · · + (−1)jAj−1] + (−1)j−1X1

(j = 2, 3, . . . , 2k)
(5)

are the vertices of a polygon generated by Λ, since the Xj satisfy equations (1).
Because a polygon eventuates for every choice of X1, Λ is pantographic.

Corollary 2. There exist nonpantographic polygons of all orders ≥ 3, and panto-
graphic polygons of all even orders ≥ 4.
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Corollary 3. If Λ = A1A2 . . .A2k is pantographic, then so is

Λ = Aσ(1)Aσ(2)Aσ(3) . . .Aσ(2k) ,

where σ is any permutation of (1, 2, . . . , 2k) which restricts to a permutation on
each of (1, 3, 5, . . . , 2k − 1) and (2, 4, 6, . . . , 2k).

Let O and E denote the sets of odd-numbered and even-numbered vertices of
Λ respectively, and attribute mass 1 to each vertex. Then (4) has the natural
interpretation: point-sets O and E have the same centre of mass. So:

Corollary 4. If Λ = A1A2 . . .A2k is pantographic, then so is any nondegenerate
polygon obtained by applying any transformation of the plane which preserves the
centre of mass of both sets, in particular by applying to one or the other of O, E
any dilation or rotation about the common centre of mass, leaving the other set
unmoved.

Corollary 5. If Λ = A1A2 . . .A2r and M = B1B2 . . .B2s are pantographic 2r-gon
and 2s-gon respectively, then the polygon

N := A1A2 . . .A2rB1B2 . . .B2s

is a pantographic 2(r + s)-gon, if nondegenerate.

Proof. The property (4) for each of Λ and M separately gives two equations; their
sum is property (4) for N.

Used separately or in conjunction, Corollaries 3, 4 and 5 give many ways of con-
structing new pantographic polygons from old.

Corollary 6. A 2k-gon is either pantographic, or has no generated polygon at all.

Proof. If Λ is not pantographic then (4) does not hold, and no solution of (1)
exists.

It follows from Theorem 1 (Corollary 1) and Theorem 2 (Corollary 6) that every
polygon has exactly 0, 1, or infinitely many generated polygons.

Corollary 7. Every regular polygon of even order 2k, k ≥ 2, is pantographic.

Proof. It suffices to assume that the vertices of the polygon lie on the unit circle
and to use the representation of the complex plane, with vertices Ar = exp(irπ/k)
(r = 1, 2, . . . , 2k), say, and then to verify property (4) in its corresponding form.

Corollary 8. A nondegenerate hexagon Λ = A1A2 . . .A6 is pantographic if and
only if there exists a point K such that A1A2A3K and KA4A5A6 are both parallel-
ograms.

Proof. Corollary 8 is intuitively obvious: any hexagon Ω = X1X2 . . .X6 generated
by Λ determines a point K as midpoint of X1X4 having the stated property. An
analytic proof proceeds as follows. Assume that there exists a point K, and take
it as origin. Then A1 +A3 = A2 and A4 +A6 = A5. Therefore A1 +A3 +A5 =
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A2 + A4 + A6, confirming (4). Conversely suppose Λ is pantographic and let K
be the fourth vertex of the parallelogram A1A2A3K. By a reversal of the previous
argument, KA4A5A6 is also a parallelogram. See Figure 2.
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Figure 2. Illustrating Corollaries 8 and 9, and Theorem 4.

Corollary 9. A polygonal arc L = A1A2A3A4 of three segments with no three
vertices collinear can be completed to form a pantographic hexagon if and only if
A1, A2, A3, A4 are not vertices of a parallelogram, and in this case this can be done
in infinitely many ways.

Proof. The condition is required so as to ensure that there exists a nondegenerate
completion. Choose an origin O and two further distinct points A5 and A6 not
collinear with any of A1, A2, A3, A4. If the polygon Λ = A1 . . .A6 is pantographic
then A1 +A3 +A5 = A2 +A4 +A6, and since A5 �= A6 then A2 −A1 �= A3 −A4
so L is not three sides of a parallelogram. The converse is proved similarly.

In order to avoid consideration of degenerate cases, in the remaining paragraphs
we relax Definitions 1 and 2 by no longer requiring nondegeneracy as a requirement
for a polygon to be pantographic.

Theorem 3. Any polygonal arc L = A1A2 . . .A2k−1 of 2k − 1 segments may be
completed to a (possibly degenerate) pantographic polygon by use of a last vertex
A2k, which is uniquely determined.

Proof. It suffices to add the vertex A2k := A1 + A3 + A5 + · · · + A2k−1 − (A2 +
A4 + A6 + · · · + A2k−2) and form the polygon Λ = A1A2 . . .A2k.

Theorem 4. Let Λ = A1A2 . . .A2r and M = B1B2 . . .B2s be pantographic 2r-gon
and 2s-gon respectively, with A2r = B1. Then the polygon

Z := A1A2 . . .A2r−1B2 . . .B2s

is a (possibly degenerate) pantographic 2(r + s − 1)-gon.

Given Λ and M as in the theorem, and nondegenerate, a rotation of M around B
can always be found ensuring that Z is nondegenerate, since only finitely many an-
gles of rotation need to be avoided; therefore nondegenerate pantographic polygons
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can be constructed with great freedom by the process of adjoining two polygons
with a common vertex.

Conversely, given a pantographic 2k-gon we can, by a reversal of this process, re-
move from it three adjacent vertices and add the fourth vertex of the parallelogram,
to produce a pantographic 2(k − 1)-gon.

A final remark: Definitions 1 and 2 do not actually require that they be interpre-
tated in the plane; it suffices that the points inhabit a Euclidean space Em−1. With
this understanding, the previous results suitably reinterpreted still hold. If Λ is a
pantographic 2k-gon, (4) shows that it lies in E2k−2; for example a parallelogram
lies in a plane but its generated quadrilaterals can lie in E3.
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