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Casus irreducibilis and Maple

Rudolf Výborný

Abstract

We give a proof that there is no formula which uses only addition, multiplication and

extraction of real roots on the coefficients of an irreducible cubic equation with three real

roots that would provide a solution.

1 Introduction

The Cardano formulae for the roots of a cubic equation with real coefficients and three
real roots give the solution in a rather complicated form involving complex numbers. Any
effort to simplify it is doomed to failure; trying to get rid of complex numbers leads back to
the original equation. For this reason, this case of a cubic is called casus irreducibilis: the
irreducible case. The usual proof uses the Galois theory [3]. Here we give a fairly simple
proof which perhaps is not quite elementary but should be accessible to undergraduates. It
is well known that a convenient solution for a cubic with real roots is in terms of trigono-
metric functions. In the last section we handle the irreducible case in Maple and obtain the
trigonometric solution.

2 Prerequisites

By N, Q, R and C we denote the natural numbers, the rationals, the reals and the com-
plex numbers, respectively. If F is a field then F [X] denotes the ring of polynomials with
coefficients in F . If F ⊂ C is a field, a ∈ C but a /∈ F then there exists a smallest field of
complex numbers which contains both F and a, we denote it by F (a). Obviously it is the
intersection of all fields which contain F as well as a. We say that F (a) was generated by
adjunction of the element a to the field F . If T (x) is a polynomial irreducible in F [X], or,
as we may also say irreducible over F , and T (a) = 0 then F (a) is the set of elements of the
form P (a), where P (x) is some polynomial in F [X]. This reprezentation is unique, provided
that deg P < deg T . If T (b) = 0 also then F (a) and F (b) are isomorphic; the isomorphism
Iσ is defined by Iσ(P (a)) = P (b). If F1 and F2 are two isomorphic fields then F1[X] and
F2[X] are also isomorphic, in case of F (a)[X] and F (b)[X] this isomorphism is given by

anxn + · · · a1x + a0 7−→ Iσ(an)xn + · · · Iσ(a1)x + Iσ(a0).

Detailed explanations and proofs can be found in text on abstract algebra, for instance [1]
or [2].

We now prove two theorems which are needed for the main result.

Theorem 1 Let p be a prime, F ⊂ C a field. If c is not a p-th power of an element in F
then the polynomial xp − c is irreducible in F [X].

Proof Assume, contrary to what we want to prove, that

xp − c = h(x)g(x),

with h(x) and g(x) in F [X] and 1 < deg h(x) < p. Let

ε = cos
2π

p
+ ı sin

2π

p
(1)
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and w be a fixed complex number satisfying wp = c. Then the roots of the equation xp = c
are

w, wε, wε2, . . . , wεp−1.

Consequently
(x− w)(x− wε) . . . (x− wεp−1) = h(x)g(x).

The absolute term A of the polynomial h(x) lies in F and is of the form A = εkwj with
j < p and k, j positive integers. Hence Ap = εkpwpj = cj . Since p, j are relatively prime
there are integers α, β such that αj + βp = 1. Consequently

c = cαj+βp = cαjcβp = Aαpcβp = (Aαcβ)p.

This contradicts the assumption that c is not a p-th power of an element in F .

Theorem 2 Let F ⊂ C be a field and f(x), g(x) ∈ F [X]. If f(x) is irreducible and
f(a) = g(a) = 0 for some complex number a then f(x) divides g(x).

Proof We can and shall assume that g(x) is not a zero polynomial. Then there exists
a greatest common divisor d(x) of f(x) and g(x), the coefficients of d(x) are in F . Clearly
d(a) = 0 and consequently deg d(x) ≥ 1. Since f(x) is irreducible it divides d(x) and hence
f(x) divides g(x).

3 The Theorem

In this section we wish to prove that there is no formula, which uses only real numbers, addi-
tion, multiplication, subtraction, division and extraction of roots and provides the solution
to any cubic equations with three real roots. Firstly, we rephrase and make this statement
more precise. Let T (x) be a cubic polynomial with rational coefficients, irreducible in Q[X].
If such a formula existed it would be possible to find a finite sequence of fields, F1, F2, . . . Fm

such that
(1) F1 = Q;
(2) For i = 2, . . . ,m the field Fi is created by adjunction of a real root of an equation

of the form xp = c, with c in Fi−1;
(3) T (x) is irreducible over Fi for i = 1, . . . ,m− 1;
(4) T (x) has a root (or simply ceases to be irreducible) in Fm.

Remark The number p, as the notation suggests, can be always taken to be a prime. If we

wish to adjunct e. g. 12
√

7 we adjunct succesively
√

7,
√√

7 and
3
√√√

7.

Theorem 3 (Casus irreducibilis) Let T (x) be a cubic polynomial irreducible over Q and
F1, F2, . . . Fm be fields satisfying 1.–4. Then T (x) has two roots with non-zero imaginary
parts.

Remark If T (x) has three real roots then the chain of fields as in 1.–4. cannot exist.
Therefore the roots of T (x) are not expressible in terms of real roots.

Proof of Theorem 3. Let r be the real root of the equation xp = c with c ∈ Fm−1 and ε
as in (1). Since T (x) is irreducible over Fm−1 but reducible over Fm there is a polynomial
P (x) = a0 + a1x + · · · ap−1x

p−1 with ai ∈ Fm−1 such that

T (x) = (x− P (r))Q(x),

where Q(x) is a quadratic polynomial with coefficients in Fm. Now let

S(x) = (x− P (r))(x− P (rε)) · · · (x− P (rεp−1)).
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The coefficient bk of xk in S(x) is σk(P (r), . . . , P (rεp−1)), where σk(x1, . . . , xp) is the kth
elementary symmetric polynomial. Since σk(P (y1), . . . , P (yp)) is a symmetric polynomial
with coefficients in Fm−1, it follows by the fundamental theorem on symmetric polynomials
(see e. g [2] p.314) that there exists a polynomial Bk(u1, . . . , up) with coefficients in Fm−1

such that
σk(P (y1), . . . , P (yp)) = Bk(σ1(y1, . . . , yp), . . . , σk(y1, . . . , yp)).

We note that σi(r, . . . , rεp−1) is the ith coefficient of xp − c. Substituting yk = rεk−1 in
the above equation we have that bk ∈ Fm−1 for k = 1, . . . , p. Since T (x) is irreducible
over Fm−1 and S(x) and T (x) have a common root (namely P (r)), T (x) must divide S(x).
Since Fm−1(rεk) is isomorphic to Fm all the numbers P (rεk) are roots of T (x). If degree
of S(x)/T (x) is not zero it will again have a common root with T (x) and consequently be
divisible by T (x). Continuing with this process we come to the conclusion that there is a
positive integer n and a 6= 0 such that S(x) = a[T (x)]n for some natural n. Consequently
p = 3n and since p is a prime p = 3 and n = 1. Therefore we have

aT (x) = S(x)

= (x− (b0 + b1r + b2r
2))(x− (b0 + b1rε + b2r

2ε2))(x− (b0 + b1rε
2 + b2r

2ε)), (2)

with real numbers b0, b1, b2. Since <ε = <ε2 the real parts of

b0 + b1rε + b2r
2ε2 and b0 + b1rε

2 + b2r
2ε

are also equal, hence their imaginary parts cannot be zero, otherwise T (x) would have
a double root, contrary to the assumption that it is irreducible. Therefore two roots of
T (x) = 0 are imaginary.

4 Maple and the cubic

The Maple command solve provides a satisfactory solution for the cubic except in the case
of an irreducible cubic with three real roots. In this case the answer is equivalent to the use
of Cayley’s form of the Cardano formulae; the roots are given in a complex form unsuitable
for use in further computation. We have shown that there is no point in trying to get rid of
the complex numbers. This has ramifications beyond cubics: if we are to solve an algebraic
equation which has several irreducible cubic factors with three real roots, the solve command
will give all roots of these factors in an inconvient form. All problems disappear with the
numerical solution, however in some situation one might want to have a solution in a ‘closed
form.’

The so called trigonometric solution was used for solving the cubic with three real roots
before the age of computer algebra system. Although Maple does not provide this form
of the solution directly it is possible to obtain from Maple an ‘exact’ solution in terms of
trigonometric functions. A convenient way of proceeding is to put the result of the solve
command in a list and then use the command evalc on the list (following possibly with the
simplify command).
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