ON 3-CLASS GROUPS OF CERTAIN PURE CUBIC FIELDS

FRANK GERTH III

Recently Calegari and Emerton made a conjecture about the 3-class groups of certain pure cubic fields and their normal closures. This paper proves their conjecture and provides additional insight into the structure of the 3-class groups of pure cubic fields and their normal closures.

1. Introduction

Let \(p \) be a prime number, and let \(K = \mathbb{Q}(\sqrt[3]{p}) \). Let \(M = \mathbb{Q}(\zeta, \sqrt[3]{p}) = \mathbb{Q}(\sqrt{-3}, \sqrt[3]{p}) \), where \(\zeta \) is a primitive cube root of unity. Let \(S_K \) be the 3-class group of \(K \) (that is, the Sylow 3-subgroup of the ideal class group of \(K \)). Let \(S_M \) (respectively, \(S_{\mathbb{Q}(\zeta)} \)) be the 3-class group of \(M \) (respectively, \(\mathbb{Q}(\zeta) \)). Since \(\mathbb{Q}(\zeta) \) has class number 1, then \(S_{\mathbb{Q}(\zeta)} = \{1\} \).

Assuming \(p \equiv 1 \pmod{9} \), Calegari and Emerton [3, Lemma 5.11] proved that the rank of \(S_M \) equals two if 9 divides \(|S_K| \), where \(|S| \) denotes the order of a finite group \(S \). Based on numerical calculations, they conjecture that the converse is also true. Their conjecture is equivalent to the following theorem that we shall prove.

Theorem 1. Assume \(p \equiv 1 \pmod{9} \), and \(S_K \) and \(S_M \) are defined as above. If \(9 \nmid |S_K| \), then the rank of \(S_M \) equals one.

We shall prove some results about the structure of \(S_K \) and \(S_M \) for arbitrary pure cubic fields \(K \), and then we shall prove Theorem 1 when \(K = \mathbb{Q}(\sqrt[3]{p}) \) with \(p \equiv 1 \pmod{9} \).

2. Some results for arbitrary pure cubic fields

We first consider arbitrary pure cubic fields \(K = \mathbb{Q}(\sqrt[3]{n}) \) with cube-free integer \(n > 1 \). Let \(M = \mathbb{Q}(\zeta, \sqrt[3]{n}) \). Various results about the 3-class groups \(S_K \) and \(S_M \) appear in [1, 2, 4, 5]. So the reader may consult those papers for more details about some of the results we present.

We let \(\sigma \) be a generator of \(\text{Gal}(M/K) \), and we let \(\tau \) be a generator of \(\text{Gal}(M/\mathbb{Q}(\zeta)) \). So \(\text{Gal}(M/K) = \langle \sigma \rangle \) is a cyclic group of order 2, and \(\text{Gal}(M/\mathbb{Q}(\zeta)) = \langle \tau \rangle \) is a cyclic group of order 3. Also \(\tau \sigma = \sigma \tau^2 \) in \(\text{Gal}(M/\mathbb{Q}) = \langle \sigma, \tau \rangle \). Using the fact that the 3-class group \(S_{\mathbb{Q}(\zeta)} = \{1\} \), we observe that if \(a \in S_M \), then \(a^{1+\tau+\tau^2} = \mathcal{N}_{M/\mathbb{Q}(\zeta)}a = 1 \), where

Received 23rd August, 2005
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/05 $A2.00+0.00.
\[N_{M/Q(\zeta)} : S_M \to S_{Q(\zeta)} \] is the norm map on ideal classes. Then \(S_M \) may be viewed as a module over \(\mathbb{Z}_3[\tau]/(1 + \tau + \tau^2) \cong \mathbb{Z}_3[\zeta] \), where \(\mathbb{Z}_3 \) is the ring of 3-adic integers. Let
\[S_M^{(1-\tau)^i} = \{ a^{(1-\tau)^i} \mid a \in S_M \} \quad \text{for} \quad i = 0, 1, 2, \ldots . \]

Since \((1 - \zeta)^2 \cdot \mathbb{Z}_3[\zeta] = 3 \cdot \mathbb{Z}_3[\zeta] \), then \(S_M^{(1-\tau)^{i+2}} = (S_M^{(1-\tau)^i})^3 \) for \(i = 0, 1, 2, \ldots . \) So for the 3-rank of \(S_M \), we have
\[\text{rank} \, S_M = \text{rank}(S_M/S_M^{3}) = \text{rank}(S_M/S_M^{1-\tau}) + \text{rank}(S_M^{1-\tau}/S_M^{(1-\tau)^2}) . \]

Next, if \(\langle \sigma \rangle \) operates on a finite group \(S \) with \(2 \mid |S| \), we let
\[S^+ = \{ a \in S \mid a^\sigma = a \} \quad \text{and} \quad S^- = \{ a \in S \mid a^\sigma = a^{-1} \} . \]

Then with \(S = S_M \), it is easy to see that \(S_M \cong S_M^+ \times S_M^- \), and \(S_M^+ \cong S_K \). If \(a \in S_M^{(1-\tau)^i} \), let \(a = c^{(1-\tau)^i} \) with \(c \in S_M \). Then \(a^\sigma = c^{(1-\tau)^i}\sigma = c^{(1-\tau)^{i+2}} \in S_M^{(1-\tau)^i} \). Also \((a^{1-\tau})^\sigma = (a^\sigma)^{1-\tau^2} \in S_M^{(1-\tau)^{i+1}} \). So \(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}} \) is a module over \(\mathbb{Z}_3[\langle \sigma \rangle] \) for \(i = 0, 1, 2, \ldots . \) Hence
\[\text{rank}(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}}) = \text{rank}(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}})^+ + \text{rank}(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}})^- \]
for \(i = 0, 1, 2, \ldots . \) We then define surjective maps \(\Delta_i \) for each \(i \) by
\[\Delta_i : S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}} \longrightarrow S_M^{(1-\tau)^{i+1}}/S_M^{(1-\tau)^{i+2}} \]
\[a \mod S_M^{(1-\tau)^{i+1}} \longrightarrow a^{1-\tau} \mod S_M^{(1-\tau)^{i+2}} \]
for \(a \in S_M^{(1-\tau)^i} \). Let \(b \in (S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}})^+ \). Then
\[(b^{1-\tau})^\sigma = (b^\sigma)^{1-\tau^2} = b^{1-\tau^2} = b^{1-\tau(1+\tau+\tau^2)} \equiv (b^{1-\tau})^{-1} \mod S_M^{(1-\tau)^{i+2}} . \]
Similarly, if \(b \in (S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}})^- \), then \((b^{1-\tau})^\sigma \equiv b^{1-\tau} \mod S_M^{(1-\tau)^{i+2}} \). So \(\Delta_i \) maps \(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}} \) onto \((S_M^{(1-\tau)^{i+1}}/S_M^{(1-\tau)^{i+2}})^+ \) and maps \(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^{i+1}} \) onto \((S_M^{(1-\tau)^{i+1}}/S_M^{(1-\tau)^{i+2}})^- \).

We now recall some results from genus theory. Let \(S_M^{(r)} = \{ a \in S_M \mid a^r = a \} \). Then
\[|S_M^{(r)}| = 3t - 2 + \delta \]
where \(t \) is the number of ramified primes for the extension \(M/Q(\zeta) \), \(\delta = 1 \) if \(\zeta \in N_{M/Q(\zeta)}M^\times \), and \(\delta = 0 \) otherwise. Here \(N_{M/Q(\zeta)} : M^\times \to Q(\zeta)^\times \) is the norm map. Now from the exact sequence
\[1 \longrightarrow S_M^{(r)} \longrightarrow S_M \xrightarrow{1-\tau} S_M \longrightarrow S_M/S_M^{1-\tau} \longrightarrow 1 \]
we see that $|S_M/S_M^{1-τ}| = |S_M^{τ}|$. Furthermore, if M_1 is the maximal Abelian extension of $Q(ζ)$ which is unramified over M, then $\text{Gal}(M_1/M) \cong S_M/S_M^{1-τ}$. By Kummer theory, there is a subgroup B of M^\times with $(M^\times)^3 \subset B \subset M^\times$ such that $M_1 = M(\sqrt[3]{B})$. Let
\[
(B/(M^\times)^3)^+ = \{ z \in B/(M^\times)^3 \mid z^3 = z \} \quad \text{and}
\]
\[
(B/(M^\times)^3)^- = \{ z \in B/(M^\times)^3 \mid z^3 = z^{-1} \} .
\]
Then $B/(M^\times)^3 \cong (B/(M^\times)^3)^+ \times (B/(M^\times)^3)^-$. There is a natural pairing
\[
\frac{B/(M^\times)^3 \times S_M/S_M^{1-τ}}{\langle ζ \rangle} \to (\sqrt[3]{z})^{a-1}
\]
with $(B/(M^\times)^3)^+$ and $(S_M/S_M^{1-τ})^-$ dual groups in this pairing, and with $(B/(M^\times)^3)^-$ and $(S_M/S_M^{1-τ})^+$ dual groups in this pairing. (See [4, Proposition 2.4].)

Finally, if h_K (respectively, h_M) is the class number of K (respectively, M), it is known that $h_M = q \cdot h_K^2/3$, where $q = 1$ or 3. (See [1, Theorem 12.1 and Theorem 14.1].) In fact, if U_M is the group of units in the ring of integers of M, and if $U_M,1$ is the subgroup of U_M generated by the units in the rings of integers of the fields $Q(ζ), Q(\sqrt[3]{π}), Q(ζ \sqrt[3]{π})$, and $Q(ζ^2 \sqrt[3]{π})$, then $q = [U_M : U_M,1]$. Then we get
\[
|S_M| = q \cdot (|S_K|)^2/3 \quad \text{with} \quad q = 1 \text{ or } 3 .
\]

3. Results for special pure cubic fields

We now suppose $n = p$ with p a prime number. As before, we let $K = Q(\sqrt[3]{p})$ and $M = Q(ζ, \sqrt[3]{p})$. Honda [7] showed that $|S_K| = 1$ (and hence $|S_M| = 1$) if $p = 3$ or if $p \equiv -1 \pmod{3}$, and $|S_K| > 1$ (and hence $|S_M| > 1$) if $p \equiv 1 \pmod{3}$. Barrucand and Cohn [1] classified K and M into four types. We shall consider various cases depending on the congruence class of p (mod 9). Most of the results in cases 1, 2, and 3 below were previously known, but we include them for the sake of completeness and to illustrate the techniques we are using.

Case 1. $p = 3$ or $p \equiv 8 \pmod{9}$.

Since only one prime ramifies in $M/Q(ζ)$, then in Equation 2, $t = 1$, $δ = 1$, and $|S_M^{(τ)}| = 1$. This implies that $|S_M| = 1$, and hence from Equation 3, $q = 3$ and $|S_K| = 1$. Thus the fields K and M are of Type IV in [1].

Case 2. $p \equiv 2$ or $5 \pmod{9}$.

The prime ideals $(1 - ζ)$ and (p) of $Q(ζ)$ ramify in M. So $t = 2$ in Equation 2. Since the cubic Hilbert symbol $((ζ,p)/p) \neq 1$ when $p \equiv 2$ or 5 (mod 9), then $δ = 0$. So $|S_M^{(τ)}| = 1$. Hence $|S_M| = 1$, $q = 3$, and $|S_K| = 1$. This implies that the prime ideal above (3) in K is a principal ideal. (Of course, the prime ideal above (p) in K is obviously principal since it is generated by $\sqrt[3]{p}$.) The fields K and M are of Type I in [1].
It remains to consider cases when \(p \equiv 1, 4, \) or \(7 \) (mod 9). In cases 3 and 4 below, we shall see that \(|S_M^{\tau(r)}| = 3 \). Let \(j \) be the positive integer such that \(S_M^{\tau(r)} \subseteq S_M^{1-(\tau(r)-1)} \) but \(S_M^{\tau(r)} \not\in S_M^{1-(\tau(r)-1)} \). Then
\[
|S_M/S_M^{1-(\tau(r)-1)}| = |S_M^{1-(\tau(r)-1)^2}/S_M^{1-(\tau(r)-1)}| = \cdots = |S_M^{1-(\tau(r)-1)^j}/S_M^{1-(\tau(r)-1)}| = 3
\]
and \(|S_M| = 3^j \). From Equation 1, we see that the 3-rank of the ideal class group of \(M \) equals one if \(j = 1 \) and equals two if \(j > 1 \). Also, since \(|S_M/S_M^{1-(\tau(r)-1)}| = |S_M^{\tau(r)}| = 3 \), there is an unramified cyclic extension \(M_1 \) of \(M \) of degree 3 which is an Abelian extension of \(\mathbb{Q}(\zeta) \), and \(\text{Gal}(M_1/M) \cong S_M/S_M^{1-(\tau(r)-1)} \). Since \(p \equiv 1 \) (mod 3), there is a unique cyclic extension \(F \) of \(\mathbb{Q} \) of degree 3 in which only \(p \) ramifies. If \(p = \pi \) is a prime factorisation of \(p \) in the ring of integers of \(\mathbb{Q}(\zeta) \), then \(F \cdot \mathbb{Q}(\zeta) = \mathbb{Q}(\zeta, \sqrt[3]{\pi}) \), and \(M_1 = M(\sqrt[3]{\pi}) \). Since
\[
(\pi \pi^2)^\sigma = \pi \pi^2 = (\pi \pi^2)^{-1} \mod (M^\times)^3
\]
then from the duality results in the previous section, we see that \(|(S_M/S_M^{1-(\tau(r)-1)})^+| = 3 \) and \(|(S_M/S_M^{1-(\tau(r)-1)})^-| = 1 \). From our observations about the maps \(\Delta_i \) in the previous section,
\[
|(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^i+1})^+| = 3 \quad \text{and} \quad |(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^i+1})^-| = 1
\]
if \(i \) is even and \(0 \leq i \leq j-1 \);
\[
|(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^i+1})^+| = 1 \quad \text{and} \quad |(S_M^{(1-\tau)^i}/S_M^{(1-\tau)^i+1})^-| = 3
\]
if \(i \) is odd and \(1 \leq i \leq j-1 \). Then
\[
|S_K| = |S_M^{+}| = 3^{j/2} \quad \text{and} \quad |S_M^{-}| = 3^{j/2}
\]
if \(j \) is even, and
\[
|S_K| = |S_M^{+}| = 3^{(j+1)/2} \quad \text{and} \quad |S_M^{-}| = 3^{(j-1)/2}
\]
if \(j \) is odd. These results provide additional insight for Equation 3; namely \(q = 3 \) in Equation 3 if \(j \) is even, and \(q = 1 \) in Equation 3 if \(j \) is odd. Furthermore, \(j \) is even if \(|(S_M^{\tau(r)})^-| = 3 \); on the other hand, \(j \) is odd if \(|S_M^{\tau(r)}| = 3 \).

Case 3. \(p \equiv 4 \) or \(7 \) (mod 9) (see [1, 2]).

The prime ideals \((1 - \zeta), (\pi), \) and \((\pi)\) of \(\mathbb{Q}(\zeta) \) ramify in \(M \). So \(t = 3 \) in Equation 2. As in case 2, \(\delta = 0 \). So \(|S_M^{\tau(r)}| = 3 \). In contrast to cases 1 and 2 where \(q \) always equals 3, \(q \) may be either 1 or 3 in case 3. To see why this is possible, suppose first that 3 is not a cubic residue modulo \(p \). (For example, \(p = 7 \).) Then the ideal \((3) \) is inert in the cyclic extension \(F \) of \(\mathbb{Q} \) of degree 3 in which only \(p \) ramifies. Thus the unique prime ideal \(\wp_3 \) above \((3) \) in \(M \) is inert in the unramified Abelian extension \(F \cdot M \), which by class field theory implies that \(\wp_3 \) is not a principal ideal. Hence the ideal class of \(\wp_3 \) generates \(S_M^{\tau(r)} \) and is not contained in \(S_M^{1-(\tau(r)-1)} \). Thus \(j = 1 \), \(|S_K| = |S_M| = 3 \), and \(q = 1 \). So \(K \) and \(M \) are
of Type III in [1] with the ideal \(\varphi\overline{\varphi}^2 \) a principal ideal, where \(\varphi \) (respectively, \(\overline{\varphi} \)) is the prime ideal of \(M \) above \((\pi)\), (respectively, \((\overline{\pi})\)).

On the other hand, if \(p = 61 \), then the class numbers \(h_K = 6 \) and \(h_M = 36 \). So \(|S_K| = 3\) and \(|S_M| = 9\). Thus \(q = 3 \) and \(j = 2 \). In this case the prime ideal \(N_{M/K}\varphi_3 \) is principal, and the ideal \(\varphi\overline{\varphi}^2 \) generates \((S_M^{(r)})^- \). Note \(S_M^{(r)} = (S_M^{(r)})^- \), and \(K \) and \(M \) are of Type I in [1]. For this example with \(p = 61 \), \(3 \) is a cubic residue modulo 61. (However, I do not know whether 3 being a cubic residue modulo a prime \(p \) with \(p \equiv 4 \) or 7 (mod 9) is sufficient to guarantee that \(q = 3 \).) This example with \(p = 61 \) does show that Theorem 1 cannot be extended to all primes \(p \equiv 1 \) (mod 3) since \(9 \nmid |S_K| \) but rank \(S_M = 2 \).

Case 4. \(p \equiv 1 \) (mod 9).

The prime ideals \((\pi)\) and \((\overline{\pi})\) of \(Q(\zeta) \) ramify in \(M \). So \(t = 2 \) in Equation 2. Since \(p \equiv 1 \) (mod 9), the cubic Hilbert symbols \((\zeta, p)/\pi = (\zeta, p)/\overline{\pi} = 1\), and hence \(\delta = 1 \). So \(|S_M^{(r)}| = 3\).

Let \(\varphi \) and \(\overline{\varphi} \) be the prime ideals of \(M \) above \((\pi)\) and \((\overline{\pi})\), respectively. Note that \(\varphi\overline{\varphi} = (\sqrt{p}) \), a principal ideal. If \(\varphi \) is not a principal ideal, then \(\overline{\varphi} \) is not a principal ideal, and the ideal class of \(\varphi\overline{\varphi}^2 \) generates \(S_M^{(r)} \). So if that happens, \(|S_M^{(r)}| = 3\) and \(|S_M^{(r)}|^+ = 1\). If \(\varphi \) is a principal ideal, then \(\overline{\varphi} \) is also a principal ideal, and hence a generator of \(S_M^{(r)} \) does not contain a ramified prime of the extension \(M/Q(\zeta) \). (In the terminology of [1, 4], there exist ambiguous classes which are not strong ambiguous, which occurs when \(\zeta \notin N_{M/Q(\zeta)}U_M \) even though \(\zeta \in N_{M/Q(\zeta)}M^\times \).

We first focus on the case where \(\varphi \) is principal. From part (1) of [6, Proposition 2], we know that a generator of \(S_M^{(r)} \) comes from \(S_M^+ \). So \(|(S_M^{(r)})^+| = 3\) and \(|(S_M^{(r)})^-| = 1\). In the discussion preceding case 3, we see that \(j \) is odd and \(q = 1 \). If \(j = 1 \), then \(|S_K| = |S_M^+| = 3\) and \(|S_M| = 3\), and hence rank \(S_M = 1 \). If \(j \geq 3 \), then 9 divides \(|S_M^+| = |S_K|\), and rank \(S_M = 2 \). So Theorem 1 is true if \(\varphi \) is principal. We remark that the fields \(K \) and \(M \) are of Type III in [1]. An example where this paragraph applies is when \(p = 19 \).

It remains to consider the situation where \(\varphi \) is not principal. Because \(|(S_M^{(r)})^-| = 3\) when \(\varphi \) is not principal, we see that \(j \) is even and \(q = 3 \). (The fields \(K \) and \(M \) would be of Type IV in [1].) Now in Theorem 1, we assume \(9 \nmid |S_K| \). Hence \(j = 2 \). If \(j = 2 \) were possible, Theorem 1 would be false. So we must show that \(j = 2 \) is impossible. Let \(F \) be the cyclic cubic extension of \(Q \) in which only \(p \) ramiﬁes, and let \(L = F \cdot Q(\zeta) \). Let \(U_L \) be the group of units in the ring of integers of \(L \), and let \(U_{L,1} \) be the subgroup of \(U_L \) generated by the units in the rings of integers of \(F \) and \(Q(\zeta) \). By [8, Theorem 4.12], \([U_L : U_{L,1}] = 1 \) or \(2 \). Since \(N_{L/Q(\zeta)}U_{L,1} = \{ \pm 1 \} \), then \(\zeta \notin N_{L/Q(\zeta)}U_{L,1} \), and since \([U_L : U_{L,1}] = 1 \) or \(2 \), then \(\zeta \notin N_{L/Q(\zeta)}U_L \). However, \(\zeta \notin N_{L/Q(\zeta)}L^\times \) since \(p \equiv 1 \) (mod 9). Now from genus theory \(|S_L^{(\omega)}| = 3\), where \(\omega \) is a generator of \(\text{Gal}(L/Q(\zeta)) \), \(S_L \) is the 3-class group of \(L \), and \(S_L^{(\omega)} = \{ a \in S_L \mid a^\omega = a \} \). Since \(\zeta \notin N_{L/Q(\zeta)}U_L \) but \(\zeta \notin N_{L/Q(\zeta)}L^\times \), a generator of \(S_L^{(\omega)} \) does not contain a ramified prime of the extension \(L/Q(\zeta) \). This means that \(\mathcal{P} \).
and \mathfrak{P} are principal ideals, where \mathfrak{P} and $\overline{\mathfrak{P}}$ are the prime ideals of L above (π) and $(\overline{\pi})$, respectively.

Now assuming $j = 2$, the Hilbert 3-class field of M is an extension M' of M of degree 9, which is a Galois extension of $\mathbb{Q}(\zeta)$ and contains the field L. Then M'/L is a Galois extension of degree 9 which is unramified at all primes. Because $|\text{Gal}(M'/L)| = 9$, then $\text{Gal}(M'/L)$ is Abelian. So M' is contained in the Hilbert 3-class field of L. Since \mathfrak{P} and $\overline{\mathfrak{P}}$ are principal ideals of L, they must split completely in M'/L. But then \wp and $\overline{\wp}$ split completely in M'/M, which is impossible since M' is the Hilbert 3-class field of M, and \wp and $\overline{\wp}$ are not principal ideals of M. Hence we have a contradiction, which means that $j = 2$ cannot happen. So the proof of Theorem 1 is complete.

References

Mathematics Department
The University of Texas at Austin
1 University Station C1200
Austin, TX 78712-0257
United States of America
e-mail: gerth@math.utexas.edu