Bifurcation of positive entire solutions for a semilinear elliptic equation.
Membership and correspondence.
Applications for membership, notices of change of address or title or position, members’ subscriptions and correspondence related to accounts should be sent to the Treasurer. Correspondence about the distribution of the Society’s BULLETIN, GAZETTE, and JOURNALS, and orders for back numbers should be sent to the Treasurer. All other correspondence should be sent to the Secretary.

The Bulletin.
The Bulletin of the Australian Mathematical Society began publication in 1969. Normally two volumes of three numbers are published annually. The BULLETIN is published for the Australian Mathematical Society by the Australian Mathematical Publishing Association Inc.

Editor: Alan S. Jones
Deputy Editor: Graeme A. Chandler

ASSOCIATE EDITORS

Robert S. Anderssen B.D. Craven B.D. Jones M. Murray
R. Bartnik R. Bartnik B.D. Davey Owen D. Jones J.H. Rubinstein
Elizabeth J. Billington J.R. Giles G.I. Lehrer Jamie Simpson
G. Cairns J.A. Hempel K.L. McAvaney Brailey Sims
J. Clark B.D. Hughes A.G.R. McIntosh Ross Street
G.L. Cohen G. Ivanov Terry Mills R.P. Sullivan
N.S. Trudinger

A.J. van der Poorten

©Copyright Statement Where necessary, permission to photocopy for internal or personal use or the internal or personal use of specific clients is granted by the Treasurer, Australian Mathematical Publishing Association, Inc., for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $A2.00 per copy of article is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should be addressed to the Treasurer, Australian Mathematical Publishing Association, Inc., School of Mathematical Sciences, ANU, Canberra ACT 0200 Australia. Serial–fee code: 0004-9727/05 $A2.00 + 0.00.
The Bulletin of the Australian Mathematical Society aims at quick publication of
original research in all branches of mathematics. The Editors receive more than three
times as much material as can be published in the BULLETIN; many meritorious
papers can, therefore, not be accepted. Authors are asked to avoid, as far as possible
the use of mathematical symbols in the title. Manuscripts are accepted for review
with the understanding that the same work is not concurrently submitted elsewhere.

To ensure speedy publication, editorial decisions on acceptance or otherwise are
taken quickly, normally within a month of receipt of the paper. Papers are ac-
cepted only after a careful evaluation by the Editor and an Associate Editor or
other expert in the field. As even minor revisions are generally not permitted, au-
thors should read carefully all the details listed below. For a paper to be acceptable
for publication, not only should it contain new and interesting results but also

(i) the exposition should be clear and attractive;
(ii) the manuscript should be in publishable form, without revision.

Authors should submit three clean, high quality copies to
The Editorial Office, Bulletin of the Australian Mathematical Society,
Department of Mathematics, The University of Queensland,
Queensland 4072, Australia.

Unless requested at the time, material submitted to the BULLETIN will usually
not be returned.

EDITORIAL POLICY

1. References. Arrange references alphabetically (by surname of the first author)
and cite them numerically in the text. Ensure the accuracy of the references: au-
thors’ names should appear as in the work quoted. Include in the list of references
only those works cited, and avoid citing works which are “in preparation” or “sub-
mitted”. Where the work cited is not readily accessible (for example, a preprint)
a photocopy of the title page and relevant sections of the copy that you have used
should be included with your submission.

2. Abstracts.

1. Each paper must include an abstract of not more than 200 words, which
should contain a brief but informative summary of the contents of the paper,
but no inessential details.
2. The abstract should be self-contained, but may refer to the title.
3. Specific references (by number) to a section, proposition, equation or biblio-
graphical item should be avoided.

3. Subject Classification. Authors should include in their papers one or more
classification numbers, following the 2000 Mathematics Subject Classification. De-
tails of this scheme can be found in each Annual Index of Mathematical Reviews or

of all accepted Australasian Ph.D. theses in mathematics. One restriction, however,
is that the abstract must be received by the Editor within 6 months of the degree
being approved.

5. Electronic Manuscripts. The Bulletin is produced using \LaTeX. Authors
who are able to do so are invited to prepare their manuscripts using \LaTeX. (We accept
Plain \TeX, \LaTeX \ or \LaTeX.) Hard copy only should be submitted for assessment,
but if the paper is accepted the author will be asked to send the text on an IBM
PC compatible diskette or via e-mail to ams@maths.uq.edu.au. [Typed manuscripts
are, of course, still acceptable.]
Bounds for the distance to finite-dimensional subspaces
S.S. Dragomir .. 337

Bifurcation of positive entire solutions for a semilinear elliptic equation
Tsing-San Hsu and Huei-Li Lin 349

A strong convergence theorem for contraction semigroups in Banach spaces
Hong-Kun Xu .. 371

A characteristic subgroup and kernels of Brauer characters
I.M. Isaacs and Gabriel Navarro 381

Note on the Schwarz triangle functions
Mark Harmer .. 385

Examples and classification of Riemannian submersions satisfying a basic equality
Bang-Yen Chen ... 391

On coatoms of the lattice of matric-extensible radicals
Halina France-Jackson 403

Similarity invariant semigroups generated by non-Fredholm operators
Iztok Kavkler .. 407

Rendezvous numbers in normed spaces
Bálint Farkas and Szilárd Győrgy Révész 423

The Hutchinson–Barnsley theory for infinite iterated function systems
Gertruda Gwoźdz-Lukawska and Jacek Jachymski 441

A functional inequality for the polygamma functions
Horst Alzer ... 455

Approximate solutions for the Couette viscometry equation
F.R. de Hoog and R.S. Anderssen 461

On 3-class groups of certain pure cubic fields
Frank Gerth III .. 471

There are no n-point F_r sets in R^m
David L. Fearnley, L. Fearnley and J.W. Lamoreaux 477

Rings having zero-divisor graphs of small diameter or large girth
S.B. Mulay .. 481

Lipschitz functions with maximal Clarke subdifferentials are staunch
Jonathan M. Borwein and Xianfu Wang 491
BIFURCATION OF POSITIVE ENTIRE SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION

Tsing-San Hsu and Huei-Li Lin

In this paper, we consider the nonhomogeneous semilinear elliptic equation

\[(*)_{\lambda} \quad -\Delta u + u = \lambda K(x)u^p + h(x) \text{ in } \mathbb{R}^N, \quad u > 0 \text{ in } \mathbb{R}^N, \quad u \in H^1(\mathbb{R}^N),\]

where \(\lambda \geq 0\), \(1 < p < (N+2)/(N-2)\), if \(N \geq 3\), \(1 < p < \infty\), if \(N = 2\), \(h(x) \in H^{-1}(\mathbb{R}^N)\), \(0 \neq h(x) \geq 0\) in \(\mathbb{R}^N\), \(K(x)\) is a positive, bounded and continuous function on \(\mathbb{R}^N\). We prove that if \(K(x) \geq K_\infty > 0\) in \(\mathbb{R}^N\), and \(\lim_{|x| \to \infty} K(x) = K_\infty\), then there exists a positive constant \(\lambda^*\) such that \((*)_{\lambda}\) has at least two solutions if \(\lambda \in (0, \lambda^*)\) and no solution if \(\lambda > \lambda^*\). Furthermore, \((*)_{\lambda}\) has a unique solution for \(\lambda = \lambda^*\) provided that \(h(x)\) satisfies some suitable conditions. We also obtain some further properties and bifurcation results of the solutions of \((*)_{\lambda}\) at \(\lambda = \lambda^*\).

1. Introduction

In this paper, we consider the semilinear elliptic equation

\[(1.1)_\lambda \quad \begin{cases} -\Delta u + u = \lambda K(x)u^p + h(x) \text{ in } \mathbb{R}^N, \\ u > 0 \text{ in } \mathbb{R}^N, \quad u \in H^1(\mathbb{R}^N), \end{cases}\]

where \(\lambda \geq 0\), \(1 < p < (N+2)/(N-2)\), if \(N \geq 3\), \(1 < p < \infty\), if \(N = 2\), \(h(x) \in H^{-1}(\mathbb{R}^N)\), \(0 \neq h(x) \geq 0\) in \(\mathbb{R}^N\), \(K(x)\) is a positive, bounded and continuous function on \(\mathbb{R}^N\). Moreover, \(h(x)\) and \(K(x)\) satisfy the following conditions:

- \((h1)\) \(h(x) \in L^2(\mathbb{R}^N) \cap L^q(\mathbb{R}^N)\) for some \(q > N/2\) if \(N \geq 3\), \(q = 2\) if \(N = 2\).
- \((k1)\) \(K(x) \geq K_\infty > 0\) in \(\mathbb{R}^N\), and \(\lim_{|x| \to \infty} K(x) = K_\infty\).

The homogeneous case, that is, \(h(x) \equiv 0\), the equation \((1.1)_\lambda\) has been studied by many authors (see \([5, 8, 13, 14, 15]\)). For the nonhomogeneous case \((h(x) \neq 0)\), Zhu \([16]\), Zhu and Zhou \([18]\) and Cao and Zhou \([6]\), established the existence of multiple positive solutions of equations with structure unlike that here.
The main aim of this paper is concerned with the existence and nonexistence of multiple positive solutions of \((1.1)_\lambda\) for the full \(\lambda \in [0, \infty)\). We also obtain some properties of solutions and some bifurcation results of solutions at \(\lambda = 0\) and \(\lambda = \lambda^*\), where \(\lambda^*\) is given in Theorem 1.1 below.

Throughout this paper, we always assume that \(h(x) \geq 0, h(x) \neq 0\) in \(\mathbb{R}^N\), \(K(x)\) is a positive, bounded and continuous function on \(\mathbb{R}^N\) and \(u_0\) is the unique solution of \((1.1)_0\), unless otherwise specified and we set

\[
||u|| = \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) \, dx \right)^{1/2},
\]

\[
||u||_q = \left(\int_{\mathbb{R}^N} |u|^q \, dx \right)^{1/q}, \quad 2 \leq q < \infty,
\]

\[
||u||_\infty = \sup_{x \in \mathbb{R}^N} |u(x)|,
\]

\[
M = \inf \left\{ \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) \, dx : \int_{\mathbb{R}^N} |u|^{p+1} \, dx = 1 \right\}.
\]

Now, we state our main results in the following.

Theorem 1.1. If \(h(x) \geq 0\) and \(h(x) \neq 0\) in \(\mathbb{R}^N\), \(K(x)\) is a positive, bounded and continuous function on \(\mathbb{R}^N\) and \(K(x)\) satisfies \((k1)\). Then there is \(\lambda^*, 0 < \lambda^* < \infty\), such that:

(i) \((1.1)_\lambda\) has at least two solutions \(u_\lambda, U_\lambda\) and \(u_\lambda < U_\lambda\) if \(\lambda \in (0, \lambda^*)\);

(ii) \((1.1)_{\lambda^*}\) has a unique solution \(u_{\lambda^*}\) provided that \(h(x)\) satisfies \((h1)\);

(iii) \((1.1)_\lambda\) has no positive solutions if \(\lambda > \lambda^*\).

Furthermore,

\[
\lambda_1 \equiv \frac{(p + 1)(p - 1)^{p-1}M^{(p+1)/2}}{(2p)^p ||K||_\infty ||h||_{H^{-1}}^{p-1}} \leq \frac{\lambda^* \leq \inf_{w \in H^1(\mathbb{R}^N)\setminus\{0\}} \left(\frac{||w||^2}{p \int_{\mathbb{R}^N} K u_0^{p-1} w^2 \, dx} \right)}{p ||h||_{H^{-1}}^2 \int_{\mathbb{R}^N} K u_0^{p+1} \, dx} \equiv \lambda_2
\]

where \(u_\lambda\) is the minimal solution of \((1.1)_\lambda\), \(U_\lambda\) is the second solution of \((1.1)_\lambda\) constructed in Section 4 and \(u_0\) is the unique positive solution of \((1.1)_0\).

Theorem 1.2. If \((h1), (k1)\) hold, \(h(x) \geq 0\), \(h(x) \neq 0\) in \(\mathbb{R}^N\) and \(K(x)\) is a positive, bounded and continuous function on \(\mathbb{R}^N\). Then

(i) \(u_\lambda\) is strictly increasing with respect to \(\lambda\), \(u_\lambda\) is uniformly bounded in \(L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)\) for all \(\lambda \in [0, \lambda^*]\) and

\[
u_\lambda \to u_0 \text{ in } L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N) \text{ as } \lambda \to 0,
\]
where u_0 is the unique positive solution of (1.1)$_0$.

(ii) U_λ is strictly decreasing with respect to λ and U_λ is unbounded in $L^\infty(\mathbb{R}^N)$ \(\cap H^1(\mathbb{R}^N)\), that is
\[
\lim_{\lambda \to 0} \|U_\lambda\| = \lim_{\lambda \to 0} \|U'_\lambda\|_\infty = \infty.
\]

(iii) Moreover, we assume that $K(x)$ and $h(x)$ are in $C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$, then all solutions of (1.1)$_\lambda$ are in $C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)$, and $(\lambda^*, u_{\lambda^*})$ is a bifurcation point for (1.1)$_\lambda$ and
\[
u_\lambda \to u_0 \text{ in } C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \text{ as } \lambda \to 0,
\]
where u_0 is the unique positive solution of (1.1)$_0$.

We shall organise this paper as follows. In Section 2, we give some notations and preliminary results. In Section 3, we assert that there exists $\lambda^* > 0$ such that (1.1)$_\lambda$ has a minimal solution for $\lambda \in [0, \lambda^*)$. In Section 4, we establish the existence of a second solution U_λ for $\lambda \in (0, \lambda^*)$ and some asymptotic behaviour of the solution of (1.1)$_\lambda$. In Section 5, we shall give some further properties, and bifurcation of solutions of (1.1)$_\lambda$.

2. Preliminaries

In this section, we shall give some notations and some known results. In order to get the existence of positive solutions of (1.1)$_\lambda$, we consider the energy functional $I_\lambda : H^1(\mathbb{R}^N) \to \mathbb{R}$ defined by
\[
I_\lambda(u) = \int_{\mathbb{R}^N} \left[\frac{1}{2} (|\nabla u|^2 + |u|^2) - \frac{\lambda}{p+1} K(x)(u^+)^{p+1} - h(x)u \right] dx,
\]
where $u^\pm(x) = \max\{\pm u(x), 0\}$. Then the critical points of I_λ are the positive solutions of (1.1)$_\lambda$. Consider the equation
\[
(2.1)_\lambda \left\{ \begin{array}{l}
-\Delta u + u = \lambda K_\infty u^p \text{ in } \mathbb{R}^N, \\
u > 0 \text{ in } \mathbb{R}^N, \quad u \in H^1(\mathbb{R}^N),
\end{array} \right.
\]

and its associated energy functional I_∞^λ defined by
\[
I_\infty^\lambda(u) = \int_{\mathbb{R}^N} \left[\frac{1}{2} (|\nabla u|^2 + |u|^2) - \frac{\lambda}{p+1} K_\infty (u^+)^{p+1} \right] dx, \quad u \in H^1(\mathbb{R}^N).
\]

It is well known that equation (2.1)$_\lambda$ has a unique ground state solution ω_λ and $I_\infty^\lambda(\omega_\lambda) = \sup_{t > 0} I_\infty^\lambda(t\omega_\lambda)$ (see Bahri and Lions [3] and the references there).

Now, we given the following known propositions for later use.
Proposition 2.1. Let \(K(x) \) satisfy (k1) and \(\{u_k\} \) be a \((PS)_c\)-sequence of \(I_\lambda \) in \(H^1(\mathbb{R}^N) \):

\[
I_\lambda(u_k) = c + o(1) \text{ as } k \to \infty, \\
I'_\lambda(u_k) = o(1) \text{ strongly in } H^{-1}(\mathbb{R}^N).
\]

Then there exist an integer \(l \geq 0 \), sequence \(\{x^i_k\} \subseteq \mathbb{R}^N \), functions \(u \in H^1(\mathbb{R}^N) \), \(u_i \in H^1(\mathbb{R}^N) \), \(1 \leq i \leq l \), such that for some subsequence \(\{u_k\} \), we have

\[
\begin{cases}
u_k - \left(\sum_{i=1}^l \frac{1}{\lambda} (\cdot - x^i_k) \right) \to 0, \text{ as } k \to \infty, \\
u_k \rightharpoonup \bar{u} \text{ weakly in } H^1(\mathbb{R}^N); \\
c = I_\lambda(\bar{u}) + \sum_{i=1}^l I^\infty_\lambda(\bar{u}_i); \\
-\Delta \bar{u} + \bar{u} = \lambda K(x) \bar{u} + h(x) \text{ in } H^{-1}(\mathbb{R}^N); \\
-\Delta \bar{u}_i + \bar{u}_i = \lambda K_\infty \bar{u}_i \text{ in } H^{-1}(\mathbb{R}^N), \ 1 \leq i \leq l; \\
|x^i_k| \to \infty, \ |x^i_k - x^j_k| \to \infty, \ 1 \leq i \neq j \leq l.
\end{cases}
\]

where we agree that in the case \(l = 0 \) the above holds without \(\bar{u}_i, x^i_k \).

Proof: The proof can be obtained by using the arguments in Bahri and Lions [3] (also see [13, 14]). We omit it.

3. Existence of Minimal Solution and Decay

In this section, by the barrier method, we prove that the existence of minimal positive solution \(u_\lambda \) for all \(\lambda \) in some finite interval \([0, \lambda^*] \) (that is, for any positive solution \(u \) of \((1.1)_\lambda \), then \(u \geq u_\lambda \)). Furthermore, we establish a decay estimate for solutions of \((1.1)_\lambda \).

Lemma 3.1. Let \(K(x) \) satisfy (k1). Then \((1.1)_\lambda \) has a solution \(u_\lambda \) if \(0 \leq \lambda < \lambda_1 \) where \(\lambda_1 \) is given by (1.2).

Proof: For \(\lambda = 0 \), the existence question is equivalent to the existence of \(u_0 \in H^1(\mathbb{R}^N) \) such that

\[
\int_{\mathbb{R}^N} \nabla u_0 \cdot \nabla \phi + u_0 \phi = \int_{\mathbb{R}^N} h\phi
\]

for all \(\phi \in H^1(\mathbb{R}^N) \). Now, we have that

\[
\left| \int_{\mathbb{R}^N} h\phi \right| \leq \|h\|_{H^{-1}} \|\phi\|.
\]

According to the Lax–Milgram theorem, there exists a unique \(u_0 \in H^1(\mathbb{R}^N) \) satisfies (3.1). Since \(0 \neq h \geq 0 \) in \(\mathbb{R}^N \), by strong maximum principle (see Gilbarg and Trudinger [10]), we conclude that \(u_0 > 0 \) in \(\mathbb{R}^N \).
We consider next the case $\lambda > 0$. We show first that for sufficiently small λ, say $\lambda = \lambda_0$, there exists $t_0 = t(\lambda_0) > 0$ such that $I_{\lambda_0}(u) > 0$ for $\|u\| = t_0$. From the definitions of I_λ, we have

$$I_\lambda(u) \geq \frac{1}{2} \|u\|^2 - \frac{\lambda}{p+1} \|K\|_\infty M^{-(p+1)/2} \|u\|^{p+1} - \|h\|_{H^{-1}} \|u\|$$

Set

$$f(t) = \frac{1}{2} t - \lambda c_1 t^p - c_2,$$

where $c_1 = \|K\|_\infty/(p+1)M^{-(p+1)/2}$ and $c_2 = \|h\|_{H^{-1}}$.

It then follows that $f(t)$ achieves a maximum at $t_\lambda = (2p\lambda c_1)^{-1}$. Set

$$B_\lambda = \{u \in H^1(\mathbb{R}^N) : \|u\| < t_\lambda\}.$$

Then for all $u \in \partial B_\lambda = \{u \in H^1(\mathbb{R}^N) : \|u\| = t_\lambda\}$,

$$I_\lambda(u) \geq t_\lambda f(t_\lambda) \geq t_\lambda [t_\lambda (p-1)/2p - c_2] > 0$$

provided that $\lambda < \lambda_1$ which λ_1 is given by (1.2). Fix such a value of λ, say λ_0, and set $t_0 = t(\lambda_0)$. Let $0 \neq \phi \geq 0$, $\phi \in C_0^\infty(\mathbb{R}^N)$ such that \(\int_{\mathbb{R}^N} h\phi \, dx > 0\). Then

$$I_{\lambda_0}(t\phi) = \frac{t^2}{2} \|\phi\|^2 - \frac{\lambda_0}{p+1} t^{p+1} \int_{\mathbb{R}^N} K\phi^{p+1} - t \int_{\mathbb{R}^N} h\phi < 0$$

for sufficiently small $t > 0$, and it is easy to see that I_{λ_0} is bounded below on B_{t_0}. Set $\alpha = \inf \{I_{\lambda_0}(u) \mid u \in B_{t_0}\}$. Then $\alpha < 0$, and since $I_{\lambda_0}(u) > 0$ on ∂B_{t_0}, the continuity of I_{λ_0} on $H^1(\mathbb{R}^N)$ implies that there exists $0 < t_1 < t_0$ such that $I_{\lambda_0}(u) > \alpha$ for all $u \in H^1(\mathbb{R}^N)$ and $t_1 \leq \|u\| \leq t_0$. By the Ekeland’s variational principle [9], there exists a sequence $\{u_k\}_{k=1}^\infty \subset B_{t_1}$ such that $I_{\lambda_0}(u_k) = \alpha + o(1)$ and $I'_{\lambda_0}(u_k) = o(1)$ strongly in $H^{-1}(\mathbb{R}^N)$, as $k \to \infty$. By Proposition 2.1, we have that there exist a subsequence $\{u_k\}$, an integer $l \geq 0$, $\omega_i > 0$, $1 \leq i \leq l$ (if $l \geq 1$), $\overline{u} > 0$ in \mathbb{R}^N and \overline{u} in \overline{B}_{t_1} such that

$$\begin{cases}
u_k \rightharpoonup \overline{u} \text{ weakly in } H^1(\mathbb{R}^N), \\
-\Delta \overline{u} + \overline{u} = \lambda_0 K(x)\overline{u}^p + h(x) \text{ in } H^{-1}(\mathbb{R}^N), \\
-\Delta \omega_i + \omega_i = \lambda_0 K_\infty \omega_i^p \text{ in } H^{-1}(\mathbb{R}^N), \quad 1 \leq i \leq l.
\end{cases}$$

Moreover,

$$I_{\lambda_0}(u_k) = I_{\lambda_0}(\overline{u}) + \sum_{i=1}^l I_{\lambda_0}^\infty(\omega_i) + o(1) \text{ as } k \to \infty.$$

Note that $I_{\lambda_0}^\infty(\omega_i) = I_{\lambda_0}^\infty(\omega_\lambda) > 0$ for $i = 1, 2, \ldots , l$. Since $\overline{u} \in B_{t_0}$, we have $I_{\lambda_0}(\overline{u}) \geq \alpha$. We conclude that $l = 0$, $I_{\lambda_0}(\overline{u}) = \alpha$ and $I'_{\lambda_0}(\overline{u}) = 0$, that is, \overline{u} is a weak positive solution of (1.1)$_{\lambda_0}$.
Now, by the standard barrier method, we get the following Lemma.

Lemma 3.2. Let $K(x)$ satisfy (k1). Then there exists $\lambda^* > 0$ such that for each $\lambda \in [0, \lambda^*)$, problem $(1.1)_\lambda$ has a minimal positive solution u_λ and u_λ is strictly increasing in λ.

Proof: Denoting
\[
\lambda^* = \sup\{\lambda \geq 0 : (1.1)_\lambda \text{ has a positive solution} \}
\]
By Lemma 3.1, we have $\lambda^* > 0$. Now, consider $\lambda \in [0, \lambda^*)$. By the definition of λ^*, we know that there exists $\lambda' > \lambda$ such that $\lambda' < \lambda^*$ and $(1.1)_{\lambda'}$ has a positive solution $u_{\lambda'} > 0$, that is,
\[
-\Delta u_{\lambda'} + u_{\lambda'} = \lambda'K(x)u_{\lambda'}^p + h(x) > \lambda K(x)u_{\lambda'}^p + h(x).
\]
Then $u_{\lambda'}$ is a supersolution of $(1.1)_{\lambda}$. From $h(x) \geq 0$ and $h(x) \neq 0$, it is easily proved that 0 is a subsolution of $(1.1)_{\lambda}$. By the standard barrier method, there exists a solution u_{λ} of $(1.1)_{\lambda}$ such that $0 \leq u_{\lambda} \leq u_{\lambda'}$. Since 0 is not a solution of $(1.1)_{\lambda}$ and $\lambda' > \lambda$, the maximum principle implies that $0 < u_{\lambda} < u_{\lambda'}$. Again using a result of Amann [1], we can choose a minimum positive solution u_{λ} of $(1.1)_{\lambda}$. This completes the proof of Lemma 3.2.

Now, we consider a solution u of $(1.1)_{\lambda}$. Let $\sigma_{\lambda}(u)$ be defined by
\[
(3.2) \quad \sigma_{\lambda}(u) = \inf\left\{ \int_{\mathbb{R}^N} (|\nabla w|^2 + |w|^2) \, dx : w \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} pKu^{p-1}w^2 \, dx = 1 \right\}
\]
By the standard direct minimisation procedure, we can show that $\sigma_{\lambda}(u)$ is attained by a function $\varphi_{\lambda} > 0$, $\varphi_{\lambda} \in H^1(\mathbb{R}^N)$, satisfying
\[
(3.3) \quad -\Delta \varphi_{\lambda} + \varphi_{\lambda} = \sigma_{\lambda}(u)pKu^{p-1}\varphi_{\lambda} \text{ in } \mathbb{R}^N.
\]

Lemma 3.3. Let $K(x)$ satisfy (k1). For $\lambda \in [0, \lambda^*)$, let u_{λ} be the minimal solution of $(1.1)_{\lambda}$ and $\sigma_{\lambda}(u_{\lambda})$ be the corresponding number given by (3.2). Then
(i) $\sigma_{\lambda}(u_{\lambda}) > \lambda$ and is strictly decreasing in λ, $\lambda \in [0, \lambda^*)$;
(ii) $\lambda^* < \infty$, and $(1.1)_{\lambda^*}$ has a minimal solution u_{λ^*}.

Proof: Consider $u_{\lambda'}$, u_{λ}, where $\lambda^* > \lambda' > \lambda \geq 0$. Let φ_{λ} be a minimiser of $\sigma_{\lambda}(u_{\lambda})$, then by Lemma 3.2, we obtain that
\[
\int_{\mathbb{R}^N} pKu_{\lambda'}^{p-1}\varphi_{\lambda}^2 \, dx > \int_{\mathbb{R}^N} pKu_{\lambda}^{p-1}\varphi_{\lambda}^2 \, dx = 1,
\]
and there is \(t, 0 < t < 1 \) such that
\[
\int_{\mathbb{R}^N} pKu_{\lambda'}^{p-1}(t\varphi_{\lambda})^2 = 1.
\]
Therefore,
\[
\sigma_{\lambda'}(u_{\lambda'}) \leq t^2\|\varphi_{\lambda}\|^2 < \|\varphi_{\lambda}\|^2 = \sigma_{\lambda}(u_{\lambda}),
\]
showing the monotonicity of \(\sigma_{\lambda}(u_{\lambda}), \lambda \in [0, \lambda^*) \).

Consider now \(\lambda \in (0, \lambda^*) \). Let \(\lambda < \lambda' < \lambda^* \). From (3.3) and the monotonicity of \(u_{\lambda} \), we get
\[
\sigma_{\lambda}(u_{\lambda}) p \int_{\mathbb{R}^N} (u_{\lambda'} - u_{\lambda}) K u_{\lambda}^{p-1} \varphi_{\lambda} \, dx
\]
\[
= \int_{\mathbb{R}^N} \nabla(u_{\lambda'} - u_{\lambda}) \cdot \nabla \varphi_{\lambda} \, dx + \int_{\mathbb{R}^N} (u_{\lambda'} - u_{\lambda}) \varphi_{\lambda} \, dx
\]
\[
= (\lambda' - \lambda) \int_{\mathbb{R}^N} K u_{\lambda'}^{p} \varphi_{\lambda} \, dx + \lambda \int_{\mathbb{R}^N} K(u_{\lambda'}^{p} - u_{\lambda}^{p}) \varphi_{\lambda} \, dx
\]
\[
\geq \lambda p \left(\int_{\mathbb{R}^N} K \varphi_{\lambda} \int_{u_{\lambda}}^{u_{\lambda'}} t^{p-1} \, dt \, dx \right)
\]
which implies that \(\sigma_{\lambda}(u_{\lambda}) > \lambda, \lambda \in (0, \lambda^*) \). This completes the proof of (i).

We show next that \(\lambda^* < \infty \). Let \(\lambda_0 \in (0, \lambda^*) \) be fixed. For any \(\lambda \geq \lambda_0 \), (3.4) and (3.5) imply
\[
\sigma_{\lambda_0}(u_{\lambda_0}) \geq \sigma_{\lambda}(u_{\lambda}) > \lambda
\]
for all \(\lambda \in [\lambda_0, \lambda^*) \). Thus, \(\lambda^* < \infty \).

By (3.2) and \(\sigma_{\lambda}(u_{\lambda}) > \lambda \), we have
\[
\int_{\mathbb{R}^N} (|\nabla u_{\lambda}|^2 + |u_{\lambda}|^2) \, dx - \lambda p \int_{\mathbb{R}^N} K u_{\lambda}^{p+1} \, dx > 0.
\]
and
\[
\int_{\mathbb{R}^N} (|\nabla u_{\lambda}|^2 + |u_{\lambda}|^2) \, dx - \int_{\mathbb{R}^N} \lambda K u_{\lambda}^{p+1} \, dx - \int_{\mathbb{R}^N} h u_{\lambda} = 0.
\]
Thus
\[
\int_{\mathbb{R}^N} (|\nabla u_{\lambda}|^2 + |u_{\lambda}|^2) \, dx = \int_{\mathbb{R}^N} \lambda K u_{\lambda}^{p+1} \, dx + \int_{\mathbb{R}^N} h u_{\lambda} \, dx
\]
\[
\leq \frac{1}{p} \int_{\mathbb{R}^N} (|\nabla u_{\lambda}|^2 + |u_{\lambda}|^2) \, dx + \|h\|_{L^2(\mathbb{R}^N)} \|u_{\lambda}\|
\]
\[
\leq \left(\frac{1}{p} + \frac{\delta}{2} \right) \|u_{\lambda}\|^2 + \frac{1}{2\delta} \|h\|^2_{L^2(\mathbb{R}^N)},
\]
for any \(\delta > 0 \). Since \(p > 1 \), we can obtain that \(\|u_{\lambda}\| \leq c < +\infty \) for all \(\lambda \in (0, \lambda^*) \) by taking \(\delta \) small enough. By Lemma 3.2, the solution \(u_{\lambda} \) is strictly increasing with respect to \(\lambda \); we may suppose that
\[
u_{\lambda} \rightharpoonup u_{\lambda^*} \text{ weakly in } H^1(\mathbb{R}^N) \text{ as } \lambda \to \lambda^*,
\]
and hence u_{λ^*} is a minimal solution of $(1.1)_{\lambda^*}$. This completes the proof of Lemma 3.3.

Lemma 3.4. If $K(x)$ satisfies (k1), then $\lambda_1 \leq \lambda^* \leq \lambda_2 \leq \lambda_3$, where λ_1, λ_2 and λ_3 are given by (1.2).

Proof: By Lemma 3.1 and the definition of λ^*, we conclude that $\lambda^* \geq \lambda_1$.

As in Lemma 3.3, we have $\sigma_\lambda(u_{\lambda}) > \lambda$ for all $\lambda \in (0, \lambda^*)$, so for any $w \in H^1(\mathbb{R}^N) \setminus \{0\}$, we have

\begin{equation}
\int_{\mathbb{R}^N} (|\nabla w|^2 + |w|^2) \, dx > \lambda p \int_{\mathbb{R}^N} K u_{\lambda}^{p-1} w^2 \, dx.
\end{equation}

Let u_0 be the unique solution of $(1.1)_0$, then by (3.6) and $u_{\lambda} > u_0$ for all $\lambda \in (0, \lambda^*)$, we obtain that

\begin{equation}
\int_{\mathbb{R}^N} (|\nabla w|^2 + |w|^2) \, dx > \lambda p \int_{\mathbb{R}^N} K u_0^{p-1} w^2 \, dx,
\end{equation}

that is,

\begin{equation}
\lambda \leq \inf_{w \in H^1(\mathbb{R}^N) \setminus \{0\}} \left(\frac{|w|^2}{p \int_{\mathbb{R}^N} K u_0^{p-1} w^2 \, dx} \right) = \lambda_2.
\end{equation}

This implies that $\lambda^* \leq \lambda_2$.

For all $\lambda \in [0, \lambda^*]$, let u_{λ} is a minimal solution of $(1.1)_{\lambda}$ and take $w = u_{\lambda}$ in (3.6), then we have that

\begin{equation}
\|u_{\lambda}\|^2 = \lambda \int_{\mathbb{R}^N} K u_{\lambda}^{p+1} \, dx + \int_{\mathbb{R}^N} h u_{\lambda} \, dx
\leq \frac{1}{p} \|u_{\lambda}\|^2 + \|h\|_{H^{-1}} \|u_{\lambda}\|.
\end{equation}

This implies that

\begin{equation}
\|u_{\lambda}\| \leq \frac{p}{p-1} \|h\|_{H^{-1}}.
\end{equation}

Take $w = u_{\lambda}$ in (3.7), and by (3.8) and the monotonicity of u_{λ}, we get that

\begin{equation}
\lambda_2 \leq \frac{\|u_{\lambda}\|^2}{p \int_{\mathbb{R}^N} K u_0^{p-1} u_{\lambda}^2 \, dx}
\leq \frac{\|h\|^2_{H^{-1}}}{(p-1)^2 \int_{\mathbb{R}^N} K u_0^{p+1} \, dx} = \lambda_3.
\end{equation}

Finally, we establish the decay estimate for solutions of $(1.1)_{\lambda}$ and this result will be used in Section 4 and Section 5. Now, we quote two Regularity Lemmas (see Hsu [11] for the proof).

Lemma 3.5. Let $f : \mathbb{X} \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that for almost every $x \in \mathbb{X}$, there holds

\begin{equation}
|f(x, u)| \leq c(|u| + |u|^p)
\end{equation}

uniformly in $x \in \mathbb{X}$,
where \mathcal{X} is a $C^{1,1}$ domain in \mathbb{R}^N, $1 < p < (N + 2)/(N - 2)$ if $N \geq 3$, $1 < p < \infty$ if $N = 2$. Also, let $u \in H^1_0(\mathcal{X})$ be a weak solution of equation $-\Delta u = f(x, u) + h(x)$ in \mathcal{X}, where $h \in L^{N/2}(\mathcal{X}) \cap L^2(\mathcal{X})$. Then $u \in L^q(\mathcal{X})$ for $q \in [2, \infty)$.

Lemma 3.6. Let \mathcal{X} be a $C^{1,1}$ domain in \mathbb{R}^N, $g \in L^2(\mathcal{X}) \cap L^q(\mathcal{X})$ for some $q \in [2, \infty)$ and $u \in H^1_0(\mathcal{X})$ be a weak solution of the equation $-\Delta u + u = g$ in \mathcal{X}. Then $u \in W^{2,q}(\mathcal{X})$ satisfies

$$\|u\|_{W^{2,q}(\mathcal{X})} \leq c\left(\|u\|_{L^q(\mathcal{X})} + \|g\|_{L^q(\mathcal{X})}\right),$$

where $c = c(N, q, \partial \mathcal{X})$.

Lemma 3.7. Let $h(x)$ satisfy (h1) and u be a weak solution of \((1.1)_\lambda\), then

(i) $u(x) \to 0$ as $|x| \to \infty$.

(ii) there exists positive constant c_1 such that

\begin{equation}
(3.10) \quad u(x) \geq c_1 \exp(-|x|)|x|^{-(N-1)/2} \text{ as } |x| \to \infty.
\end{equation}

Proof: (i) Let u satisfy

$$-\Delta u + u = \lambda K(x)u^p + h(x) \quad \text{in } H^{-1}(\mathbb{R}^N).$$

Since K is bounded and $h \in L^2(\mathbb{R}^N) \cap L^q(\mathbb{R}^N)$ for some $q > N/2$. Hence

$$h \in L^2(\mathbb{R}^N) \cap L^{N/2}(\mathbb{R}^N)$$

and by Lemma 3.5, we have $u \in L^q(\mathbb{R}^N)$ for $q \in [2, \infty)$. Hence

$$\lambda K(x)u^p + h(x) \in L^2(\mathbb{R}^N) \cap L^q(\mathbb{R}^N)$$

for some $q > N/2$. Then by Lemma 3.6, we have $u \in W^{2,q}(\mathbb{R}^N)$ for some $q > N/2$. By the Sobolev embedding theorem, $u \in C^0_b(\mathbb{R}^N)$ and there exists $c > 0$, such that for any $r > 1$,

$$\|u\|_{L^\infty(\overline{B_r})} \leq c\|u\|_{W^{2,q}(\overline{B_r})},$$

where

$$\overline{B_r} = \{x \in \mathbb{R}^N : |x| > r\}.$$

Hence $\lim_{|x| \to \infty} u(x) = 0$.

(ii) It is very easy to show that $(1 + 1/\sqrt{|x|})e^{-|x|/|x|^{(N-1)/2}}$ is a subsolution of \((1.1)_\lambda\) for all $|x|$ large. Therefore (3.10) is proved by means of the maximum principle.
Lemma 3.8. Let u_λ be the minimal solution of $(1.1)_\lambda$ for $\lambda \in [0, \lambda^*]$ and $\sigma_\lambda(u_\lambda) > \lambda$. Then for any $g(x) \in H^{-1}(\mathbb{R}^N)$, problem

$$(3.11)_\lambda \quad -\Delta w + w = \lambda p K u_\lambda^{p-1} w + g(x), w \in H^1(\mathbb{R}^N)$$

has a solution.

Proof: Consider the functional

$$\Phi(w) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla w|^2 + w^2) \, dx - \frac{1}{2} \lambda p \int_{\mathbb{R}^N} K u_\lambda^{p-1} w \, dx - \int_{\mathbb{R}^N} g(x) w \, dx,$$

where $w \in H^1(\mathbb{R}^N)$. From Hölder inequality and Young’s inequality, we have, for any $\varepsilon > 0$, that

$$(3.12) \quad \Phi(w) \geqslant \frac{1}{2}(1 - \lambda \sigma_\lambda(u_\lambda)^{-1})\|w\|^2 - \frac{1}{2}\varepsilon\|w\|^2 - C \varepsilon \frac{1}{2} \|g\|_{H^{-1}(\mathbb{R}^N)}^2$$

if we choose ε small.

Now, let $\{w_n\} \subset H^1(\mathbb{R}^N)$ be the minimising sequence of variational problem

$$d = \inf \{\Phi(w) \mid w \in H^1(\mathbb{R}^N)\}.$$

From (3.12) and $\sigma_\lambda(u_\lambda) > \lambda$, we can also deduce that $\{w_n\}$ is bounded in $H^1(\mathbb{R}^N)$, if we choose ε small. So we may suppose that

$$w_n \rightharpoonup w \text{ weakly in } H^1(\mathbb{R}^N) \text{ as } n \to \infty,$$

$$w_n \to w \text{ almost everywhere in } \mathbb{R}^N \text{ as } n \to \infty.$$

By Fatou’s Lemma,

$$\|w\|^2 \leqslant \liminf \|w_n\|^2.$$

By Lemma 3.7, we have that $u_\lambda(x) \to 0$ as $|x| \to \infty$ and the weak convergence imply

$$\int_{\mathbb{R}^N} g w_n \, dx \to \int_{\mathbb{R}^N} g w \, dx, \quad \int_{\mathbb{R}^N} K u_\lambda^{p-1} w_n \, dx \to \int_{\mathbb{R}^N} K u_\lambda^{p-1} w \, dx \text{ as } n \to \infty.$$

Therefore

$$\Phi(w) \leqslant \lim_{n \to \infty} \Phi(w_n) = d,$$

and hence $\Phi(w) = d$ which gives that w is a solution of $(3.11)_\lambda$.

Remark 3.9. From Lemma 3.8, we know that $(3.11)_\lambda$ has a solution $w \in H^1(\mathbb{R}^N)$. Now, we also assume that $K(x), h(x),$ and $g(x)$ are in $C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$, then by the elliptic regular theory ([10]), we can deduce that $w \in C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)$.

Lemma 3.10. Suppose u_{λ^*} is a solution of $(1.1)_{\lambda^*}$, then $\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^*$ and the solution u_{λ^*} is unique.

Proof: Define $F : \mathbb{R} \times H^1(\mathbb{R}^N) \longrightarrow H^{-1}(\mathbb{R}^N)$ by

$$F(\lambda, u) = \Delta u - u + \lambda K(u^+)^p + h(x).$$

Since $\sigma(\lambda) \geq \lambda$ for $\lambda \in (0, \lambda^*)$, so $\sigma_{\lambda^*}(u_{\lambda^*}) \geq \lambda^*$. If $\sigma_{\lambda^*}(u_{\lambda^*}) > \lambda^*$, the equation $F_u(\lambda^*, u_{\lambda^*})\phi = 0$ has no nontrivial solution. From Lemma 3.8, F_u maps $\mathbb{R} \times H^1(\mathbb{R}^N)$ onto $H^{-1}(\mathbb{R}^N)$. Applying the implicit function theorem to F, we can find a neighbourhood $(\lambda^* - \delta, \lambda^* + \delta)$ of λ^* such that $(1.1)_{\lambda}$ possesses a solution u_λ if $\lambda \in (\lambda^* - \delta, \lambda^* + \delta)$. This is contradictory to the definition of λ^*. Hence, we obtain that $\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^*$.

Next, we are going to prove that u_{λ^*} is unique. In fact, suppose $(1.1)_{\lambda^*}$ has another solution $U_{\lambda^*} \geq u_{\lambda^*}$. Set $w = U_{\lambda^*} - u_{\lambda^*}$; we have

$$0 = \int_{\mathbb{R}^N} \lambda^* K[(w + u_{\lambda^*})^p - u_{\lambda^*}^p] \phi_1 \, dx$$

By $\sigma_{\lambda^*}(u_{\lambda^*}) = \lambda^*$, we have that the problem

$$-\Delta \phi + \phi = \lambda^* p K u_{\lambda^*}^{p-1} \phi, \quad \phi \in H^1(\mathbb{R}^N)$$

possesses a positive solution ϕ_1.

Multiplying (3.13) by ϕ_1 and (3.14) by w, integrating and subtracting we deduce that

$$0 = \frac{1}{2} p (p - 1) \int_{\mathbb{R}^N} \lambda^* K \xi_{\lambda^*}^{p-2} w^2 \phi_1 \, dx,$$

where $\xi_{\lambda^*} \in (u_{\lambda^*}, u_{\lambda^*} + w)$. Thus $w \equiv 0$.

4. **Existence of second solution**

The existence of a second solution of $(1.1)_{\lambda}$, $\lambda \in (0, \lambda^*)$, will be established via the mountain pass theorem. When $0 < \lambda < \lambda^*$, we have known that $(1.1)_{\lambda}$ has a minimal positive solution u_λ by Lemma 3.2, then we need only to prove that $(1.1)_{\lambda}$ has another positive solution in the form of $U_\lambda = u_\lambda + v_\lambda$, where v_λ is a solution of the following problem:

$$(4.1)_{\lambda} \left\{ \begin{array}{l}
-\Delta v + v = \lambda K[(v + u_\lambda)^p - u_\lambda^p] \text{ in } \mathbb{R}^N, \\
v \in H^1(\mathbb{R}^N), v > 0 \text{ in } \mathbb{R}^N,
\end{array} \right.$$

The corresponding variational functional of $(4.1)_{\lambda}$ is

$$J(\lambda)(v) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla v|^2 + v^2) - \lambda \int_{\mathbb{R}^N} \int_{0}^{v^+} K[(s + u_\lambda)^p - u_\lambda^p] \, ds \, dx, \quad v \in H^1(\mathbb{R}^N).$$
The following lemma comes from the fact

$$\lim_{s \to 0} \frac{(u_\lambda + s)^p - u_\lambda^p - pu_\lambda^{p-1}s}{s} = 0$$

and

$$\lim_{s \to \infty} \frac{(u_\lambda + s)^p - u_\lambda^p - pu_\lambda^{p-1}s}{s^p} = 1$$

Lemma 4.1. For any $\varepsilon > 0$, there is a positive constant c_ε such that

$$(u_\lambda + s)^p - u_\lambda^p - pu_\lambda^{p-1}s \leq \varepsilon u_\lambda^{p-1}s + c_\varepsilon s^p$$

for all $s \geq 0$.

Lemma 4.2. Under condition $(k1)$, then there exist positive constants ρ and α, such that

$$J_\lambda(v) \geq \alpha > 0, \ v \in H^1(\mathbb{R}^N), \ ||v|| = \rho.$$

Proof: By Lemma 4.1, we have

$$J_\lambda(v) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla v|^2 + v^2) \ dx - \frac{1}{2} \lambda p \int_{\mathbb{R}^N} K u_\lambda^{p-1}(v^+)^2 \ dx$$

$$- \lambda \int_{\mathbb{R}^N} \int_{0}^{v^+} K[(u_\lambda + s)^p - u_\lambda^p - pu_\lambda^{p-1}s] \ ds \ dx$$

$$(4.2) \geq \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla v|^2 + v^2) \ dx - \lambda p \int_{\mathbb{R}^N} K u_\lambda^{p-1}(v^+)^2 \ dx$$

$$- \lambda \int_{\mathbb{R}^N} K \left[\frac{\varepsilon}{2} u_\lambda^{p-1}(v^+)^2 + c_\varepsilon (v^+)^{p+1} \right] \ dx.$$

Furthermore, from the definition $\sigma_\lambda(u_\lambda)$ in (3.2), we have

$$\int_{\mathbb{R}^N} (|\nabla v|^2 + v^2) \ dx \geq \sigma_\lambda(u_\lambda)p \int_{\mathbb{R}^N} K u_\lambda^{p-1}(v^+)^2 \ dx,$$

and, therefore, by (4.2) we obtain

$$J_\lambda(v) \geq \frac{1}{2} \sigma_\lambda(u_\lambda)^{-1} (\sigma_\lambda(u_\lambda) - \lambda - \frac{\varepsilon}{2} \lambda) ||v||^2 - \lambda c(p + 1)^{-1} \int_{\mathbb{R}^N} K(v^+)^p \ dx.$$

Since $\sigma_\lambda(u_\lambda) > \lambda$, by property (ii) in Lemma 3.3, the boundedness of K, and the Sobolev inequality imply that for small $\varepsilon > 0$,

$$J_\lambda(v) \geq \frac{1}{4} \sigma_\lambda(u_\lambda)^{-1} (\sigma_\lambda(u_\lambda) - \lambda) ||v||^2 - \lambda c ||v||^{p+1},$$

and the conclusion in Lemma 4.2 follows.
We need the following concentration compactness principle to prove our result:

Lemma 4.3. Assume condition (k1) holds. Let \(\{v_k\} \) be a \((PS)_c\) sequence of \(J_\lambda \) in \(H^1(\mathbb{R}^N) \):

\[
J_\lambda(v_k) = c + o(1) \text{ as } k \to \infty, \\
J'_\lambda(v_k) = o(1) \text{ strong in } H^{-1}(\mathbb{R}^N).
\]

Then there exists a subsequence (still denoted by) \(\{v_k\} \) for which the following holds: there exist an integer \(l \geq 0 \), sequence \(\{x_k^i\} \subset \mathbb{R}^N \), a solution \(v_\lambda \) of (4.1)\(\lambda \) and solutions \(v_i^\lambda \) of (2.1)\(\lambda \), for \(1 \leq i \leq l \), such that

\[
\begin{cases}
v_k \rightharpoonup v_\lambda \text{ weakly in } H^1(\mathbb{R}^N); \\
v_k - \left[v_\lambda + \sum_{i=1}^l \bar{v}_\lambda^i (\cdot - x_k^i)\right] \to 0 \text{ strongly in } H^1(\mathbb{R}^N); \\
J_\lambda(v_k) = J_\lambda(v_\lambda) + \sum_{i=1}^l I_\lambda^{\infty}(\bar{v}_\lambda^i) + o(1).
\end{cases}
\]

where we agree that in the case \(l = 0 \) the above holds without \(v_\lambda, x_k^i \).

Proof: Lemma 4.3 can be derived directly from the arguments in Bahri and Lions [3] (or [4, 14, 17]). We omit it.

Lemma 4.4. Assume condition (k1) holds, then

(i) there exists \(t_0 > 0 \), such that

\[J_\lambda(t\omega_\lambda) < 0 \text{ for all } t \geq t_0. \]

(ii) the following inequality holds

\[0 < \sup_{t \geq 0} J_\lambda(t\omega_\lambda) < I_\lambda^{\infty}(\omega_\lambda) = M_\lambda^{\infty}. \]

Proof: By \(\omega_\lambda \) is the ground state solution of (2.1)\(\lambda \) and condition (k1), then we have

\[
J_\lambda(t\omega_\lambda) = \frac{1}{2} t^2 \int_{\mathbb{R}^N} (|\nabla \omega_\lambda|^2 + |\omega_\lambda|^2) \, dx - \frac{1}{p+1} t^{p+1} \int_{\mathbb{R}^N} \lambda K(x)\omega_\lambda^{p+1} \, dx \\
- \int_{\mathbb{R}^N} \int_{0}^{t\omega_\lambda} \lambda K(x) \left[(s + u_\lambda)^p - u_\lambda^p - s^p\right] ds \, dx
\]

\[
(4.3) \leq \frac{1}{2} t^2 \|\omega_\lambda\|^2 - \frac{1}{p+1} t^{p+1} \int_{\mathbb{R}^N} \lambda K_\infty \omega_\lambda^{p+1}(x) \, dx
\]

\[
\leq c_1 t^2 - c_2 t^{p+1}
\]

where \(c_1 = 1/2\|\omega_\lambda\|^2 \), \(c_2 = 1/(p+1) \int_{\mathbb{R}^N} \lambda K_\infty \omega_\lambda^{p+1}(x) \, dx \) are independent of \(t \). From (4.3), we conclude the result (i).
From (i), we easily see that the left hand of (ii) holds and we need only to show that the right hand of (ii) holds. By (i), we have that there exists \(t_2 > 0 \) such that
\[
\sup_{t \geq 0} J_\lambda(t\omega_\lambda) = \sup_{0 \leq t \leq t_2} J_\lambda(t\omega_\lambda).
\]
Since \(J \) is continuous in \(H^1(\mathbb{R}^N) \), there exists \(t_1 > 0 \) such that
\[
J_\lambda(t\omega_\lambda) < M^\infty_\lambda, \text{ for } 0 \leq t < t_1.
\]
Then, to prove (ii) we now only to prove the following inequality:
\[
\sup_{t_1 \leq t \leq t_2} J_\lambda(t\omega_\lambda) < I^\infty_\lambda(\omega_\lambda) = M^\infty_\lambda.
\]

By the definition of \(J_\lambda \), we get
\[
J_\lambda(t\omega_\lambda) = \frac{t^2}{2} \int_{\mathbb{R}^N} (|\nabla \omega_\lambda|^2 + \omega_\lambda^2) \, dx - \frac{t^{p+1}}{p+1} \int_{\mathbb{R}^N} \lambda K_\infty \omega_\lambda^{p+1} \, dx
+ \frac{t^{p+1}}{p+1} \int_{\mathbb{R}^N} \lambda (K_\infty - K(x)) \omega_\lambda^{p+1} \, dx
- \int_{\mathbb{R}^N} \int_{0}^{t\omega_\lambda} \lambda K(x)[(s + u_\lambda)^p - u_\lambda^p - s^p] \, ds \, dx.
\]
Since \(\omega_\lambda \) is the ground state solution of (2.1) and \(\sup_{t \geq 0} I^\infty_\lambda(t\omega_\lambda) = I^\infty_\lambda(\omega_\lambda) \), then we have
\[
J_\lambda(t\omega_\lambda) \leq I^\infty_\lambda(\omega_\lambda) - \frac{t^{p+1}}{p+1} \int_{\mathbb{R}^N} \lambda (K_\infty - K(x)) \omega_\lambda^{p+1} \, dx
- \int_{\mathbb{R}^N} \int_{0}^{t\omega_\lambda} \lambda K(x)[(s + u_\lambda)^p - u_\lambda^p - s^p] \, ds \, dx.
\]
By condition (k1) and \((t_1 + t_2)^p \geq (\neq)t_1^p + t_2^p\) for all \(t_1 \geq 0, t_2 \geq 0, p > 1. \) Therefore, we obtain that
\[
J_\lambda(t\omega_\lambda) \leq I^\infty_\lambda(\omega_\lambda) - \inf_{t_1 \leq t \leq t_2} \int_{\mathbb{R}^N} \int_{0}^{t\omega_\lambda} \lambda K(x)[(s + u_\lambda)^p - u_\lambda^p - s^p] \, ds \, dx
< M^\infty_\lambda.
\]
Therefore (ii) holds.

Proposition 4.5. Suppose condition (k1) holds. Then problem (4.1) has at least one solution for \(\lambda \in (0, \lambda^*) \).

Proof: By Lemma 4.4 (i), we know that there is \(t_0 > 0 \) such that \(J_\lambda(t_0\omega_\lambda) < 0. \) We set
\[
\Gamma = \left\{ \gamma \in C([0,1], H^1(\mathbb{R}^N)) : \gamma(0) = 0, \, \gamma(1) = t_0\omega_\lambda \right\},
\]
then, by Lemma 4.2 and Lemma 4.4 (ii) we get

\[(4.4) \quad 0 < c = \inf_{\gamma \in \Gamma} \max_{0 \leq s \leq 1} J_{\lambda}(\gamma(s)) < M^\infty_{\lambda}.
\]

Applying the mountain pass lemma of Ambrosetti and Rabinowitz [2], there exists a \((PS)_c\)-sequence \(\{v_k\}\) such that

\[J_{\lambda}(v_k) \to c \quad \text{and} \quad J'_{\lambda}(v_k) \to 0 \quad \text{in} \quad H^{-1}(\mathbb{R}^N).
\]

By Lemma 4.3, there exist a subsequence, still denoted by \(\{v_k\}\), an integer \(l \geq 0\), a solution \(v_\lambda\) of \((4.1)_{\lambda}\) and solutions \(\overline{v}^i_\lambda\) of \((2.1)_{\lambda}\), for \(1 \leq i \leq l\), such that

\[(4.5) \quad c = J_{\lambda}(v_\lambda) + \sum_{i=1}^{l} I^\infty_{\lambda}(\overline{v}^i_\lambda).
\]

By the strong maximum principle, to complete the proof, we only need to prove \(v_\lambda \not\equiv 0\) in \(\mathbb{R}^N\). In fact, by (4.4) and (4.5), we have

\[c = J_{\lambda}(v_\lambda) \geq \alpha > 0 \quad \text{if} \quad l = 0, \quad M^\infty_{\lambda} > c \geq J_{\lambda}(v_\lambda) + M^\infty_{\lambda} \quad \text{if} \quad l \geq 1.
\]

This implies \(v_\lambda \not\equiv 0\) in \(\mathbb{R}^N\).

5. Properties and bifurcation of solutions

In this section, we shall give some further properties and bifurcation of solutions for problem \((1.1)_{\lambda}\). Now, we set

\[A = \{(\lambda, u) : u \text{ satisfies } (1.1)_{\lambda}, \lambda \in [0, \lambda^*]\}.
\]

For each \((\lambda, u) \in A\), let \(\sigma_\lambda(u)\) denote the number defined by (3.2), which is the smallest eigenvalue of the problem (3.3).

We always assume that condition \((h1)\) and \((k1)\) hold. By Lemma 3.6, we have \(A \subset L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)\). Moreover, if we assume that,

\[h(x), K(x) \in C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N),
\]

then by elliptic regular theory ([10]), we can deduce that \(A \subset C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)\).

Lemma 5.1. Let \(u\) be a solution and \(u_\lambda\) be the minimal solution of \((1.1)_{\lambda}\) for \(\lambda \in (0, \lambda^*)\). Then

(i) \(\sigma_\lambda(u) > \lambda\) if and only if \(u = u_\lambda\);

(ii) \(\sigma_\lambda(U_\lambda) < \lambda\), where \(U_\lambda\) is the second solution of \((1.1)_{\lambda}\) constructed in Section 4.
Proof: Now, let $\psi \geq 0$ and $\psi \in H^1(\mathbb{R}^N)$. Since u and u_λ are the solution of (1.1)$_\lambda$, then

$$
\int_{\mathbb{R}^N} \nabla \psi \cdot \nabla (u_\lambda - u) \, dx + \int_{\mathbb{R}^N} \psi (u_\lambda - u) \, dx = \lambda \int_{\mathbb{R}^N} K(u_\lambda^p - u^p) \psi \, dx
$$

(5.1)

$$
= \lambda \int_{\mathbb{R}^N} \left(\int_u^{u_\lambda} t^{p-1} \, dt \right) pK \psi \, dx

\geq \lambda \int_{\mathbb{R}^N} pK u^{p-1}(u_\lambda - u) \psi \, dx.
$$

Let $\psi = (u - u_\lambda)^+ \geq 0$ and $\psi \in H^1(\mathbb{R}^N)$. If $\psi \neq 0$, then (5.1) implies

$$
-\int_{\mathbb{R}^N} (|\nabla \psi|^2 + \psi^2) \, dx \geq -\lambda \int_{\mathbb{R}^N} pK u^{p-1} \psi^2 \, dx
$$

and, therefore, the definition of $\sigma_\lambda(u)$ implies

$$
\int_{\mathbb{R}^N} (|\nabla \psi|^2 + \psi^2) \, dx \leq \lambda \int_{\mathbb{R}^N} pK u^{p-1} \psi^2 \, dx

< \sigma_\lambda(u) \int_{\mathbb{R}^N} pK u^{p-1} \psi^2 \, dx

\leq \int_{\mathbb{R}^N} (|\nabla \psi|^2 + \psi^2) \, dx,
$$

which is impossible. Hence $\psi \equiv 0$, and $u = u_\lambda$ in \mathbb{R}^N. On the other hand, by Lemma 3.3, we also have that $\sigma_\lambda(u_\lambda) > \lambda$. This completes the proof of (i).

By (i), we get that $\sigma_\lambda(U_\lambda) \leq \lambda$ for $\lambda \in (0, \lambda^*)$. We claim that $\sigma_\lambda(U_\lambda) = \lambda$ cannot occur. We proceed by contradiction. Set $w = U_\lambda - u_\lambda$; we have

$$
-\Delta w + w = \lambda K \left[U_\lambda^p - (U_\lambda - w)^p \right], \ w > 0 \text{ in } \mathbb{R}^N.
$$

(5.2)

By $\sigma_\lambda(U_\lambda) = \lambda$, we have that the problem

$$
-\Delta \phi + \phi = \lambda pK U_\lambda^{p-1} \phi, \ \phi \in H^1(\mathbb{R}^N)
$$

(5.3)

possesses a positive solution ϕ_1.

Multiplying (5.2) by ϕ_1 and (5.3) by w, integrating and subtracting we deduce that

$$
0 = \int_{\mathbb{R}^N} \lambda K \left[U_\lambda^p - (U_\lambda - w)^p - pU_\lambda^{p-1}w \right] \phi_1 \, dx

= -\frac{1}{2} p(p-1) \int_{\mathbb{R}^N} \lambda K \xi_\lambda^{p-2} w^2 \phi_1 \, dx,
$$

where $\xi_\lambda \in (u_\lambda, U_\lambda)$. Thus $w \equiv 0$, that is $U_\lambda = u_\lambda$ for $\lambda \in (0, \lambda^*)$. This is a contradiction. Hence, we have that $\sigma_\lambda(U_\lambda) < \lambda$ for $\lambda \in (0, \lambda^*)$.

Remark 5.2. Since $\sigma_\lambda(U_\lambda) < \lambda$, one may employ a similar argument to the used for u_λ to show that U_λ is strictly decreasing in λ, $\lambda \in (0, \lambda^*)$.
Proposition 5.3. Let u_λ be the minimal solution of (1.1)$_\lambda$. Then u_λ is uniformly bounded in $L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ for all $\lambda \in [0, \lambda^*]$ and

$$u_\lambda \to u_0 \text{ in } L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N) \text{ as } \lambda \to 0.$$

where u_0 is the unique positive solution of (1.1)$_0$.

Proof: By Lemma 3.2, 3.3, and 3.7, we can deduce $\|u_\lambda\|_\infty \leq \|u_{\lambda^*}\|_\infty \leq c$, for $\lambda \in [0, \lambda^*]$. By (3.8), we have that

$$\|u_\lambda\| \leq \frac{p}{p-1} \|h\|_{H^{-1}}.$$

Hence, u_λ is uniformly bounded in $L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ for $\lambda \in [0, \lambda^*]$.

Now, let $w_\lambda = u_\lambda - u_0$, then w_λ satisfies the following equation

$$(5.4)_\lambda$$

$$-\Delta w_\lambda + w_\lambda = \lambda K u^p_\lambda \text{ in } \mathbb{R}^N,$$

and by u_λ is uniformly bounded in $L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$, we have that

$$\|w_\lambda\|^2 = \int_{\mathbb{R}^N} \lambda K u^p_\lambda w_\lambda \, dx
\leq \lambda \|K\|_\infty \|u_\lambda\|_\infty^{p-1} \|u_\lambda\|_2 \|w_\lambda\|_2
\leq c\lambda,$$

where c is independent of λ. Hence, we obtain that $u_\lambda \to u_0$ in $H^1(\mathbb{R}^N)$ as $\lambda \to 0$.

Now, let $q_0 = N/2 + 2 > \max\{N/2, 2\}$ and by u_λ is uniformly bounded in $L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$, then we have that $\lambda K u^p_\lambda \in L^{q_0}(\mathbb{R}^N)$. By Lemma 3.6 and using (5.4)$_\lambda$, we have

$$w_\lambda \in W^{2,2}(\mathbb{R}^N) \cap W^{2,q_0}(\mathbb{R}^N).$$

By the Sobolev embedding theorem, Lemma 3.6 and $u_{\lambda^*} \geq u_\lambda > 0$ for $\lambda \in [0, \lambda^*]$, we have that

$$\|w_\lambda\|_\infty \leq c_1 \|w_\lambda\|_{W^{2,q_0}(\mathbb{R}^N)}
\leq c_2 (\|\lambda K u^p_\lambda\|_{q_0} + \|w_\lambda\|_{q_0})
\leq c_3 (\lambda \|u^p_\lambda\|_{q_0} + \|w_\lambda\|_\infty^{(q_0-2)/(q_0)} \|w_\lambda\|_2^{2/(q_0)})
\leq c (\lambda + \lambda^{1/(q_0)})$$

where c is independent of λ. Hence, we obtain that $u_\lambda \to u_0$ in $L^\infty(\mathbb{R}^N)$ as $\lambda \to 0$.

Proposition 5.4. For $\lambda \in (0, \lambda^*)$, let U_λ be the positive solution of (1.1)$_\lambda$ with $U_\lambda > u_\lambda$, then U_λ is unbounded in $L^\infty(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$, that is

$$\lim_{\lambda \to 0} \|U_\lambda\| = \lim_{\lambda \to 0} \|U_\lambda\|_\infty = \infty.$$
Proof: Firstly, we show that \(\{ U_\lambda : \lambda \in (0, \lambda^*) \} \) is unbounded in \(H^1(\mathbb{R}^N) \). Since \(U_\lambda = u_\lambda + v_\lambda \), we only need to show that \(\{ v_\lambda : \lambda > 0 \} \) is unbounded in \(H^1(\mathbb{R}^N) \). If not, then

\[
(5.5) \quad \| v_\lambda \| \leq M
\]

for all \(\lambda \in (0, \lambda^*) \). It is easily to see that for any \(\delta > 0 \), \(\{ U_\lambda \}_{\lambda \geq \delta} \) is bounded in \(H^1(\mathbb{R}^N) \), we may assume \(\lambda \in (0, \delta] \).

Choose \(\lambda_n \downarrow 0 \) and let \(v_{\lambda_n} \) be the corresponding solutions constructed by Proposition 4.5. By the Hölder inequality and the Sobolev embedding theorem, we obtain that

\[
\int_{\mathbb{R}^N} (|\nabla v_{\lambda_n}|^2 + |v_{\lambda_n}|^2) \, dx = \int_{\mathbb{R}^N} \lambda_n K [U_{\lambda_n}^p - u_{\lambda_n}^p] v_{\lambda_n} \, dx \\
\leq c \lambda_n \| U_{\lambda_n}^p \|_{p+1} \| v_{\lambda_n} \|_{p+1} \\
\leq c \lambda_n \| U_{\lambda_n} \|^p \| v_{\lambda_n} \| \\
\leq c_1 \lambda_n
\]

for some constant \(c_1 \), independent of \(v_{\lambda_n} \), where we have used (5.5) and the boundedness of \(\{ u_{\lambda_n} \} \) in \(H^1(\mathbb{R}^N) \). Hence, we have \(\lim_{n \to \infty} \| v_{\lambda_n} \|^2 = 0 \). It implies that

\[
(5.6) \quad \lim_{n \to \infty} \| v_{\lambda_n} \|_2 = 0.
\]

On the other hand, we notice that \(U_{\lambda} = u_{\lambda} + v_{\lambda} \) is decreasing and \(u_{\lambda} \) is increasing in \(\lambda \). Therefore, \(v_{\lambda} \) is decreasing in \(\lambda \), which implies

\[
v_{\lambda_n} \geq v_{\delta} \quad \text{for all } n,
\]

then we obtain that

\[
\| v_{\lambda_n} \|_2 \geq \| v_{\delta} \|_2 > 0 \quad \text{for all } n.
\]

which contradicts (5.6). This implies that \(\{ U_{\lambda} : \lambda \in (0, \lambda^*) \} \) is unbounded in \(H^1(\mathbb{R}^N) \).

Now, we show that \(\{ U_{\lambda} : \lambda \in (0, \lambda^*) \} \) is unbounded in \(L^\infty(\mathbb{R}^N) \). We proceed by contradiction. Assume to the contrary that there exists \(c_0 > 0 \) such that

\[
\| U_{\lambda} \|_\infty \leq c_0 < \infty \quad \text{for all } \lambda \in (0, \lambda^*).
\]

Since \(U_{\lambda} \) is a solution of (1.1)\(\lambda \), we have that

\[
\| U_{\lambda} \|^2 = \int_{\mathbb{R}^N} \lambda K^{p+1} \, dx + \int_{\mathbb{R}^N} hU_{\lambda} \, dx \\
\leq \lambda^{p-1}_0 \| K \|_\infty \| U_{\lambda} \|^2 + \| h \|_2 \| U_{\lambda} \|_2 \\
\leq c_1 \lambda \| U_{\lambda} \|^2 + c_2 \| U_{\lambda} \|,
\]

where \(c_1 \) and \(c_2 \) are independent of \(\lambda \). If we choose

\[
\lambda_0 = \min \left\{ \lambda^*, \frac{1}{2c_1} \right\},
\]
then there exists $c > 0$, independent of λ, such that $\|U_\lambda\| \leq c$ for all $\lambda \leq \lambda_0$. This is a contradiction to that $\{U_\lambda : \lambda \in (0, \lambda^*)\}$ is unbounded in $H^1(\mathbb{R}^N)$. This completes the proof of Proposition 5.4.

In order to get bifurcation results we need the following Bifurcation Theorem which can be found in Crandall and Rabinowitz [7].

Theorem A. Let X, Y be Banach space. Let $(\bar{\lambda}, \bar{x}) \in \mathbb{R} \times X$ and let F be a continuously differentiable mapping of an open neighbourhood of $(\bar{\lambda}, \bar{x})$ into Y. Let the null-space

$$N(F_x(\bar{\lambda}, \bar{x})) = \text{span}\{x_0\}$$

be one-dimensional and $\text{codim} \ R(F_x(\bar{\lambda}, \bar{x})) = 1$. Let $F_\lambda(\bar{\lambda}, \bar{x}) \not\in R(F_x(\bar{\lambda}, \bar{x}))$. If Z is the complement of $\text{span}\{x_0\}$ in X, then the solutions of $F(\lambda, x) = F(\bar{\lambda}, \bar{x})$ near $(\bar{\lambda}, \bar{x})$ form a curve

$$(\lambda(s), x(s)) = (\bar{\lambda} + \tau(s), \bar{x} + sx_0 + z(s)),$$

where

$$s \to (\tau(s), z(s)) \in \mathbb{R} \times Z$$

is continuously differentiable function near $s = 0$ and $\tau(0) = \tau'(0) = 0$, $z(0) = z'(0) = 0$.

Proof of Theorem 1.1 and Theorem 1.2: Theorem 1.1 now follows from Lemma 3.2, 3.3, 3.4, 3.10, 5.1 and Proposition 4.5. The conclusion (i) and (ii) of Theorem 1.2 follow immediately from Lemma 3.2, Remark 5.2 and Proposition 5.3, 5.4. Now we are going to prove that $(\lambda^*, u_{\lambda^*})$ is a bifurcation point in $C^2,\alpha(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)$ by using an idea in [12]. We also assume that $K(x)$ and $h(x)$ are in $C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$ and define

$$F : \mathbb{R} \times C^2,\alpha(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \to C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$$

by

$$F(\lambda, u) = \Delta u - u + \lambda K(u^+)^p + h(x).$$

where $C^2,\alpha(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)$ and $C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$ are endowed with the natural norm; then they become Banach spaces. It can be proved easily that $F(\lambda, u)$ is differentiable. From Lemma 3.8 and Remark 3.9, we know that

$$F_u(\lambda, u)w = \Delta w - w + \lambda pK u^{p-1}_x w$$

is an isomorphism of $\mathbb{R} \times C^2,\alpha(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)$ onto $C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N)$. It follows from Implicit Function Theorem that the solutions of $F(\lambda, u) = 0$ near (λ, u_λ) are given by a continuous curve.

Now we are going to prove that $(\lambda^*, u_{\lambda^*})$ is a bifurcation point of F. We show first that at the critical point $(\lambda^*, u_{\lambda^*})$, Theorem A applies. Indeed, from Lemma 3.10,
problem (3.14) has a solution \(\phi_1 > 0 \) in \(\mathbb{R}^N \). By the standard elliptic regular theory, we have that \(\phi_1 \in C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \) if \(h \in C^\alpha(\mathbb{R}^N) \cap L^2(\mathbb{R}^N) \). Thus

\[
F_u(\lambda^*, u_{\lambda^*})\phi = 0, \quad \phi \in C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N)
\]

has a solution \(\phi_1 > 0 \). This implies that \(N(F_u(\lambda^*, u_{\lambda^*})) = \text{span}\{\phi_1\} = 1 \) is one-dimensional and codim \(R(F_u(\lambda^*, u_{\lambda^*})) = 1 \) by the Fredholm alternative. It remains to check that \(F_\lambda(\lambda^*, u_{\lambda^*}) \not\in R(F_u(\lambda^*, u_{\lambda^*})) \).

Assuming the contrary would imply existence of \(v \neq 0 \) such that

\[
\Delta v - v + \lambda^* pKu_{\lambda^*}^{p-1}v = K u_{\lambda^*}^p, \quad v \in H^1(\mathbb{R}^N).
\]

From \(F_u(\lambda^*, u_{\lambda^*})\phi_1 = 0 \), we conclude that \(\int_{\mathbb{R}^N} Ku_{\lambda^*}^p \phi_1 \, dx = 0 \). This is impossible because \(K(x) \geq 0, K(x) \not\equiv 0, u_{\lambda^*}(x) > 0 \) and \(\phi_1(x) > 0 \) in \(\mathbb{R}^N \).

Applying Theorem A, we conclude that \((\lambda^*, u_{\lambda^*}) \) is a bifurcation point near which, the solution of (1.1) form a curve \((\lambda^* + \tau(s), u_{\lambda^*} + s\phi_1 + z(s))\) with \(s \) near \(s = 0 \) and \(\tau(0) = \tau'(0) = 0, z(0) = z'(0) = 0 \). We claim that \(\tau''(0) < 0 \) which implies that the bifurcation curve turns strictly to the left in \((\lambda, u)\) plane.

Since \(u_{\lambda^*}(x) \to 0 \) as \(|x| \to \infty\), we have, for \(|x| \) large,

\[
0 = \Delta \phi_1 - \phi_1 + \lambda^* pKu_{\lambda^*}^{p-1} \phi_1 = \Delta \phi_1 - \frac{1}{4} \phi_1.
\]

It is well-known that the equation \(\Delta w - w/4 = -w^p \) in \(\mathbb{R}^N \) has a unique positive radial symmetric solution, denoted by \(\bar{w} \) (see Bahri and Lions [3] and the references there), and there exists \(c_1 > 0 \) such that

\[
\bar{w}(|x|) e^{|x|/2} |x|^{(N-1)/2} \to c_1.
\]

Since \(\Delta \bar{w} - \bar{w}/4 = -\bar{w}^p \leq 0 \) in \(\mathbb{R}^N \), hence we obtain by the maximum principle that

\[
(5.7) \quad \phi_1(x) \leq c_2 e^{-|x|/2} |x|^{-(N-1)/2} \quad \text{for } |x| \text{ large,}
\]

for some \(c_2 > 0 \).

From (3.10) and (5.7) and the Holder’s inequality, we derive that

\[
(5.8) \quad \int_{\mathbb{R}^N} Ku_{\lambda^*}^{p-2} \phi_1^3 \, dx \leq c \int_{\mathbb{R}^N} Ku_{\lambda^*}^{p-1} \phi_1 \, dx
\]

\[
\leq c \left(\int_{\mathbb{R}^N} u_{\lambda^*}^{p+1} \, dx \right)^{(p-1)/(p+1)} \left(\int_{\mathbb{R}^N} e^{-(p+1)/4 |x|} \, dx \right)^{2/(p+1)} < \infty.
\]

Since \(\lambda = \lambda^* + \tau(s) \), \(u = u_{\lambda^*} + s\phi_1 + z(s) \) in

\[
(5.9) \quad -\Delta u + u - \lambda K u^p - h = 0, \quad u > 0, \quad u \in C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N).
\]
Differentiating (5.9) in s twice, we have
\[-\Delta u_{ss} + u_{ss} - \lambda pK u^{p-1}_{ss} u_s - 2\lambda_s pK u^{p-1} u_s - \lambda p(p-1) K u^{p-2} u_s^2 - \lambda_{ss} K u^p = 0.\]

Setting here s = 0 and using the facts that \(\tau'(0) = 0\), \(u_s = \phi_1(x)\) and \(u = u_{\lambda^*}\) as \(s = 0\), we obtain
\[-\Delta u_{ss} + u_{ss} - \lambda^* pK u^{p-1}_{\lambda^*} u_s - \lambda^* p(p-1) K u^{p-2}_{\lambda^*} \phi_1^2 - \tau''(0) K u^p_{\lambda^*} = 0\]

Multiplying \(F_u(\lambda^*, u_{\lambda^*}) \phi_1 = 0\) by \(u_{ss}\), and (5.10) by \(\phi_1\), integrating and subtracting the result, and by (5.8) we obtain
\[
\int_{\mathbb{R}^N} \lambda^* p(p-1) K u^{p-2}_{\lambda^*} \phi_1^3 \, dx + \tau''(0) \int_{\mathbb{R}^N} K u^p_{\lambda^*} \phi_1 \, dx = 0,
\]
which immediately gives \(\tau''(0) < 0\). Thus
\[
\begin{align*}
 u_\lambda &\to u_{\lambda^*} \quad \text{in} \quad C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \quad \text{as} \quad \lambda \to \lambda^*, \\
 U_\lambda &\to u_{\lambda^*} \quad \text{in} \quad C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \quad \text{as} \quad \lambda \to \lambda^*.
\end{align*}
\]

Using Lemma 3.8, Remark 3.9, the Implicit Function Theorem and the uniqueness of the positive ground-state solution of (1.1)0, we can easily prove that
\[
u_\lambda \to u_0 \quad \text{in} \quad C^{2,\alpha}(\mathbb{R}^N) \cap H^2(\mathbb{R}^N) \quad \text{as} \quad \lambda \to 0,
\]
which proves Theorem 1.2. \(\square\)

REFERENCES

