*Bull. Austral. Math. Soc.* 72(3) pp.491--496, 2005.

# Lipschitz functions with maximal Clarke subdifferentials are staunch

## Jonathan M. Borwein |
## Xianfu Wang |

Research for the first author was supported by NSERC and
the CRC programme.

Research for the second author was supported by NSERC.

## Abstract

In a recent paper we have shown that most non-expansive Lipschitz functions (in the sense of Baire's category) have a maximal Clarke subdifferential. In the present paper, we show that in a separable Banach space the set of non-expansive Lipschitz functions with a maximal Clarke subdifferential is not only of generic, but also staunch.

#### Click to download PDF of this article (free access until July 2006)

#### or get the *no-frills* version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) | MathSciNet: MR2199651 | Z'blatt-MATH: 1121.49015 |

## References

- J.M. Borwein and X. Wang;

Lipschitz functions with maximal subdifferentials are generic,

*Proc. Amer. Math. Soc.***128**(2000), pp. 3221--3229.**MR1777577** - J.M. Borwein, W.B. Moors and X. Wang;

Generalized subdifferentials: a Baire categorical approach,

*Trans. Amer. Math. Soc.***353**(2001), pp. 3875--3893.**MR1837212** - F.H. Clarke;

*Optimization and nonsmooth analysis*(Wiley Interscience, New York, 1983).**MR709590** - J.R. Giles and S. Sciffer;

Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces,

*Bull. Austral. Math. Soc.***47**(1993), pp. 205--212.**MR1210135** - S. Reich, A.J. Zaslavski;

The set of noncontractive mappings is*σ*-porous in the space of all non-expansive mappings,

*C. R. Acad. Sci. Paris***333**(2001), pp. 539--544.**MR1860926** - L. Zajicek;

Small non-*σ*-porous sets in topologically complete metric spaces,

*Colloq. Math.***77**(1998), pp. 293--304.**MR1628994**

ISSN 0004-9727