*Bull. Austral. Math. Soc.* 72(3) pp.471--476, 2005.

# On 3-class groups of certain pure cubic fields

## Frank Gerth III |

.

## Abstract

Recently Calegari and Emerton made a conjecture about the 3-class groups of certain pure cubic fields and their normal closures. This paper proves their conjecture and provides additional insight into the structure of the 3-class groups of pure cubic fields and their normal closures.

#### Click to download PDF of this article (free access until July 2006)

#### or get the *no-frills* version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) | MathSciNet: MR2199648 | Z'blatt-MATH: pre05031546 |

## References

- P. Barrucand and H. Cohn;

Remarks on principal factors in a relative cubic field,

*J. Number Theory***3**(1971), pp. 226--239.**MR276197** - P. Barrucand, H. Williams and L. Baniuk;

A computational technique for determining the class number of a pure cubic field,

*Math. Comp.***30**(1976), pp. 312--323.**MR392913** - F. Calegari and M. Emerton;

On the ramification of Hecke algebras at Eisenstein primes,

*Invent. Math.***160**(2005), pp. 97--144.**MR2129709** - F. Gerth;

On 3-class groups of pure cubic fields,

*J. Reine Angew. Math.***278/279**(1975), pp. 52--62.**MR387234** - F. Gerth;

Ranks of 3-class groups of non-Galois cubic fields,

*Acta Arith.***30**(1976), pp. 307--322.**MR422198** - G. Gras;

Sur les*ℓ*-classes d'idéaux des extensions non galoisiennes de*{***Q***}*de degré premier impair*ℓ*a clôture galoisienne diédrale de degré*2ℓ*,

*J. Math. Soc. Japan***26**(1974), pp. 677--685.**MR364179** - T. Honda;

Pure cubic fields whose class numbers are multiples of three,

*J. Number Theory***3**(1971), pp. 7--12.**MR292795** - L. Washington;

*Introduction to cyclotonic fields*(Springer-Verlag, New York, 1982).**MR718674**

ISSN 0004-9727