*Bull. Austral. Math. Soc.* 72(3) pp.337--347, 2005.

# Bounds for the distance to finite-dimensional subspaces

## S.S. Dragomir |

.

## Abstract

We establish upper bounds for the distance to finite-dimensional subspaces in inner product spaces and improve some generalisations of Bessel's inequality obtained by Boas, Bellman and Bombieri. Refinements of the Hadamard inequality for Gram determinants are also given.

#### Click to download PDF of this article (free access until July 2006)

#### or get the *no-frills* version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) | MathSciNet: MR2199636 | Z'blatt-MATH: 1104.46011 |

## References

- R. Bellman;

Almost orthogonal series,

*Bull. Amer. Math. Soc.***50**(1944), pp. 517--519.**MR10639** - R.P. Boas;

A general moment problem,

*Amer. J. Math.***63**(1941), pp. 361--370.**MR3848** - E. Bombieri;

A note on the large sieve,

*Acta Arith.***18**(1971), pp. 401--404.**MR286773** - F. Deutsch;

*Best Approximation in inner product spaces*,

CMS Books in Mathematics (Springer-Verlag, New York, Berlin, Heidelberg, 2001).**MR1823556** - S.S. Dragomir;

A counterpart of Bessel's inequality in inner product spaces and some Grüss type related results,

*RGMIA Res. Rep. Coll.***6**(2003).

Supplement, Article 10. [Online: http://rgmia.vu.edu.au/v6(E).html] - S.S. Dragomir;

Some Bombieri type inequalities in inner product spaces,

*J. Indones. Math. Soc.***10**(2004), pp. 91--97.**MR2097092** - S.S. Dragomir;

On the Boas--Bellman inequality in inner product spaces,

*Bull. Austral. Math. Soc.***69**(2004), pp. 217--225.**MR2051357** - S.S. Dragomir;

Advances in inequalities of the Schwarz, Grüss and Bessel type in inner product spaces,

*RGMIA Monographs*(2004).

[Online: http://rgmia.vu.edu.au/monographs/advances.htm] - D.S. Mitrinović, J.E. Pečarić and A.M. Fink;

*Classical and new inequalities in analysis*(Kluwer Academic, Dordrecht, 1993).**MR1220224**

ISSN 0004-9727