*Bull. Austral. Math. Soc.* 72(2) pp.291--298, 2005.

# Bounded vector measures on effect algebras

## Hong Taek Hwang |
## Longlu Li |
## Hunnam Kim |

This paper was supported by Kumoh National Institute of Technology.

## Abstract

Let (

*L*,, , 0, 1) be an effect algebra and*X*a locally convex space with dual*X*^{}. A function :*L**X*is called a measure if (*a**b*) = (*a*) + (*b*) whenever*a**b*in*L*and it is bounded if (*a*_{n}) is bounded for each orthogonal sequence {*a*_{n}} in*L*. We establish five useful conditions that are equivalent to boundedness for vector measures on effect algebras.#### Click to download PDF of this article (free access until July 2006)

#### or get the *no-frills* version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) | MathSciNet: MR2183410 | Z'blatt-MATH: 02246391 |

## References

- S.P. Gudder;

*Quantum probability*(Academic Press, Boston, 1989).**MR958911** - E.D. Habil;

Brooks-Jewett and Nikodym convergence theorems for orthoalgebras that have the weak subsequential interpolation property,

*Internat. J. Theoret. Phys.***34**(1994), pp. 465--491.**MR1330347** - R.L. Li, R.C. Cui and M.H. Zhao;

Invariants on all admissible polar topologies,

*Chinese Ann. Math. Ser. A***19**(1998), pp. 289--294.**MR1641098** - R. Li and S.M. Kang;

Characterizations of bounded vector measures,

*Bull. Korean Math. Soc.***37**(2000), pp. 209--215.**MR1757488** - R.L. Li and Q.Y. Bu;

Locally convex spaces containing no copy of*c*,_{0}

*J. Math. Anal. Appl.***172**(1993), pp. 205--211.**MR1199505** - F.G Mazario;

Convergence theorems for topological group valued measures en effect algebras,

*Bull. Austral. Math. Soc.***64**(2001), pp. 213--231.**MR1860059** - C. Swartz and C. Stuart;

Orlicz-Pettis theorems for multiplier convergent series,

*Z. Anal. Anwendungen***17**(1998), pp. 805--811.**MR1669893** - A. Wilansky;

*Modern methods in topological vector spaces*(McGraw-Hill, New York, 1978).**MR518316**

ISSN 0004-9727