*Bull. Austral. Math. Soc.* 72(2) pp.177--186, 2005.

# Height estimates on cubic twists of the Fermat elliptic curve

## Tomasz Jedrzejak |

.

## Abstract

We give bounds for the canonical height of rational and integral points on cubic twists of the Fermat elliptic curve. As a corollary we prove that there is no integral arithmetic progression on certain curves in this family.

#### Click to download PDF of this article (free access until July 2006)

#### or get the *no-frills* version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) | MathSciNet: MR2183401 | Z'blatt-MATH: 02246382 |

## References

- M.A. Bennet;

On the representation of unity by binary cubic forms,

(preprint).**MR1806730** - A. Bremner, J.H. Silverman and N. Tzanakis;

Integral points in arithmetic progression on*y*,^{2}=x( x^{2}-n^{2})

*J. Number Theory***80**(2000), pp. 187--208.**MR1740510** - J.E. Cremona;

`mwrank`,

http://www.maths.nott.ac.uk/personal/jec/ftp/progs. - M. Hindry and J.H. Silverman;

The cannonical heights and integral points on elliptic curves,

*Invent. Math.***93**(1998), pp. 419--450.**MR948108** - S. Lang;

*Elliptic curves: Diophantine analysis*,

Grundlehren der Math. Wiss (Springer-Verlag, Berlin, New York, 1978).**MR518817** - J.H. Silverman;

*Advanced topics in the arithmetic of elliptic curves*,

Graduate Texts in Math.**151**(Springer-Verlag, New York, 1994).**MR1312368** - J. Tate;

Algorithm for determining the type of a singular fiber in an elliptic pencil,

in*Modular Functions of One Variable IV*,

Lecture Notes in Math. 476 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).**MR393039**

ISSN 0004-9727