On the monotonicity properties of additive representation functions.

Volume 72, Number 1
August, 2005
President: M.G. Cowling
Department of Pure Mathematics,
The University of New South Wales,
Sydney NSW 2052, Australia.

Secretary: E.J. Billington
Department of Mathematics,
The University of Queensland,
Queensland 4072, Australia.

Treasurer: A. Howe
Department of Mathematics,
The Australian National University,
Canberra ACT 0200, Australia

Membership and correspondence.
Applications for membership, notices of change of address or title or position, members’ subscriptions and correspondence related to accounts should be sent to the Treasurer. Correspondence about the distribution of the Society’s BULLETIN, GAZETTE, and JOURNALS, and orders for back numbers should be sent to the Treasurer. All other correspondence should be sent to the Secretary.

The Bulletin.
The Bulletin of the Australian Mathematical Society began publication in 1969. Normally two volumes of three numbers are published annually. The BULLETIN is published for the Australian Mathematical Society by the Australian Mathematical Publishing Association Inc.

Editor: Alan S. Jones
Deputy Editor: Graeme A. Chandler
Department of Mathematics,
The University of Queensland,
Queensland 4072, Australia.

ASSOCIATE EDITORS

Robert S. Anderssen B.D. Craven B.D. Jones M. Murray
R. Bartnik R. Davey Owen D. Jones J.H. Rubinstein
Elizabeth J. Billington J.R. Giles G.I. Lehrer Jamie Simpson
G. Cairns J.A. Hempel K.L. McAvaney Brailey Sims
J. Clark B.D. Hughes A.G.R. McIntosh Ross Street
G.L. Cohen G. Ivanov Terry Mills R.P. Sullivan
N.S. Trudinger A.J. van der Poorten

©Copyright Statement Where necessary, permission to photocopy for internal or personal use or the internal or personal use of specific clients is granted by the Treasurer, Australian Mathematical Publishing Association, Inc., for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $A2.00 per copy of article is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should be addressed to the Treasurer, Australian Mathematical Publishing Association, Inc., School of Mathematical Sciences, ANU, Canberra ACT 0200 Australia. Serial–fee code: 0004-9727/05 $A2.00 + 0.00.
INFORMATION FOR AUTHORS

The Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. The Editors receive more than three times as much material as can be published in the BULLETIN; many meritorious papers can, therefore, not be accepted. Authors are asked to avoid, as far as possible the use of mathematical symbols in the title. Manuscripts are accepted for review with the understanding that the same work is not concurrently submitted elsewhere.

To ensure speedy publication, editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. Papers are accepted only after a careful evaluation by the Editor and an Associate Editor or other expert in the field. As even minor revisions are generally not permitted, authors should read carefully all the details listed below. For a paper to be acceptable for publication, not only should it contain new and interesting results but also

(i) the exposition should be clear and attractive;
(ii) the manuscript should be in publishable form, without revision.

Authors should submit three clean, high quality copies to
The Editorial Office, Bulletin of the Australian Mathematical Society,
Department of Mathematics, The University of Queensland,
Queensland 4072, Australia.

Unless requested at the time, material submitted to the BULLETIN will usually not be returned.

EDITORIAL POLICY

1. References. Arrange references alphabetically (by surname of the first author) and cite them numerically in the text. Ensure the accuracy of the references: authors' names should appear as in the work quoted. Include in the list of references only those works cited, and avoid citing works which are “in preparation” or “submitted”. Where the work cited is not readily accessible (for example, a preprint) a photocopy of the title page and relevant sections of the copy that you have used should be included with your submission.

2. Abstracts.

1. Each paper must include an abstract of not more than 200 words, which should contain a brief but informative summary of the contents of the paper, but no inessential details.
2. The abstract should be self-contained, but may refer to the title.
3. Specific references (by number) to a section, proposition, equation or bibliographical item should be avoided.

3. Subject Classification. Authors should include in their papers one or more classification numbers, following the 2000 Mathematics Subject Classification. Details of this scheme can be found in each Annual Index of Mathematical Reviews or on the web at http://www.ams.org/msc.

4. Abstracts of Ph.D. Theses. The Bulletin endeavours to publish abstracts of all accepted Australasian Ph.D. theses in mathematics. One restriction, however, is that the abstract must be received by the Editor within 6 months of the degree being approved.

5. Electronic Manuscripts. The Bulletin is produced using \textsc{amS-T\TeX}. Authors who are able to do so are invited to prepare their manuscripts using \textsc{T\TeX}. (We accept Plain \textsc{T\TeX}, \textsc{amS-T\TeX} or \textsc{amS-La\TeX}.) Hard copy only should be submitted for assessment, but if the paper is accepted the author will be asked to send the text on an IBM PC compatible diskette or via e-mail to ams@maths.uq.edu.au. [Typed manuscripts are, of course, still acceptable.]
A note on the lattice of density preserving maps
Sejal Shah and T.K. Das

A strong excision theorem for generalised Tate cohomology
N. Mramor Kosta

Linear geometries on the Moebius strip: a theorem of Skornyakov type
Rainer Löwen and Burkhard Polster

Div-curl type theorems on Lipschitz domains
Zengjian Lou

A nonlinear map for midpoint locally uniformly rotund renorming
S. Lajara and A.J. Pallarés

A remarkable continued fraction
David Angell and Michael D. Hirschhorn

A new variational method for the $p(x)$-Laplacian equation
Marek Galewski

Boundary unique continuation theorems under zero Neumann boundary conditions
Xiangxing Tao and Songyan Zhang

On the Ky Fan inequality and related inequalities II
Edward Neuman and Józef Sándor

Finite presentability of some metabelian Hopf algebras
Dessislava H. Kochloukova

On the monotonicity properties of additive representation functions
Yong-Gao Chen, András Sárközy, Vera T. Sós and MinTang

Generation of diagonal acts of some semigroups of transformations and relations
Peter Gallagher and Nik Ruškuc

Subalgebras of free restricted Lie algebras
R.M. Bryant, L.G. Kovács and Ralph Stöhr

A multiple character sum evaluation
Dae San Kim

Implicit vector equilibrium problems via nonlinear scalarisation
Jun Li and Nan-Jing Huang

ABSTRACTS OF AUSTRALASIAN Ph.D. THeses

Numerical methods for quantitative finance
Jamie Alcock

Volume 72 Number 1 August 2005
ON THE MONOTONICITY PROPERTIES OF ADDITIVE REPRESENTATION FUNCTIONS

YONG-GAO CHEN, ANDRÁS SÁRKÖZY, VERA T. SÓS AND MIN TANG

If \(A \) is a set of positive integers, let \(R_1(n) \) be the number of solutions of \(a + a' = n, \ a, \ a' \in A \), and let \(R_2(n) \) and \(R_3(n) \) denote the number of solutions with the additional restrictions \(a < a' \), and \(a \leq a' \) respectively. The monotonicity properties of the three functions \(R_1(n) \), \(R_2(n) \), and \(R_3(n) \) are studied and compared.

1. Introduction

Let \(\mathbb{N} \) denote the set of positive integers, let \(\mathcal{A} \subset \mathbb{N} \) be an infinite set, and put \(A(n) = |\{a : a \leq n, \ a \in \mathcal{A}\}| \). For \(n = 0, 1, 2, \ldots \), let

\[
R_1(n) = R_1(\mathcal{A}, n), \quad R_2(n) = R_2(\mathcal{A}, n), \quad R_3(n) = R_3(\mathcal{A}, n)
\]

denote the number of solutions of

\[
a + a' = n, \quad a, \ a' \in \mathcal{A},
\]
\[
a + a' = n, \quad a, \ a' \in \mathcal{A}, \quad a < a'
\]
\[
a + a' = n, \quad a, \ a' \in \mathcal{A}, \quad a \leq a',
\]
respectively.

Erdős, Sárközy and Sós [3, 4] and Balasubramanian [2] studied the monotonicity properties of the functions \(R_1(n) \), \(R_2(n) \) and \(R_3(n) \). Somewhat unexpectedly, it turned out that the monotonicity properties of the three representation functions differ significantly. In particular, Erdős, Sárközy and Sós proved in [3] that \(R_1(n) \) can be monotonically increasing from a certain point on only in the trivial way:

Theorem A. The function \(R_1(n) \) is eventually increasing; that is, there exists an integer \(n_0 \) with

\[
R_1(n + 1) \geq R_1(n) \quad \text{for } n \geq n_0
\]
If and only if $\mathbb{N} \setminus A$ is finite; that is, there exists an integer n_1 with

$$A \cap \{n_1, n_1 + 1, n_1 + 2, \ldots\} = \{n_1, n_1 + 1, n_1 + 2, \ldots\}$$

In [3] the following was also proved.

Theorem B. If $A \subset \mathbb{N}$ is an infinite set such that

$$(1) \quad A(n) = o\left(\frac{n}{\log n}\right),$$

then the function $R_2(n)$ cannot be eventually increasing.

In [3] they also claimed the following result:

Theorem C. Let B be a set of positive integers such that

(i) B is a "Sidon set", that is,

$$b_1 + b_2 = b_3 + b_4, \quad b_1, b_2, b_3, b_4 \in B, \quad b_1 \leq b_2, b_3 \leq b_4$$

imply that $b_1 = b_3$ and $b_2 = b_4$,

(ii) all the elements of B are even, and

(iii) $b, b' \in B$ implies that $(b + b')/2 \notin B$.

Then the complement of B, that is, the set

$$(2) \quad \mathcal{A} = \mathbb{N} \setminus B$$

is such that the function $R_2(n) = R_2(A, n)$ is monotonically increasing.

However, this theorem is false in its original form stated above: it is easy to check that the set $B = \{2, 2^2, \ldots, 2^n, \ldots\}$ satisfies conditions (i), (ii) and (iii) in the theorem; but defining \mathcal{A} by (2), we have

$$R_2(\mathcal{A}, 2^n) = 2^{n-1} - n + 1$$

and

$$R_2(\mathcal{A}, 2^n + 1) = 2^{n-1} - n$$

so that

$$R_2(\mathcal{A}, 2^n) > R_2(\mathcal{A}, 2^n + 1)$$

and thus $R_2(A, n)$ is not eventually increasing. The error in the theorem is due to the fact that a computational error was made in the last line of (28) in [3] and thus the formula stated there is wrong.

In [4] Erdős, Sárközy and Sós proved:

Theorem D. If $A \subset \mathbb{N}$ is an infinite set such that

$$(3) \quad \lim_{n \to +\infty} \frac{n - A(n)}{\log n} = +\infty,$$
then we have

\[\limsup_{N \to +\infty} \sum_{k=1}^{N} (R_3(2k) - R_3(2k + 1)) = +\infty. \]

It was also shown in [4] that this result is near the best possible:

Theorem E. There exists an infinite sequence \(\mathcal{A} \subset \mathbb{N} \) such that there are \(c(>0) \), \(n_0 \) so that

\[n - A(n) > c \log n \quad (\text{for } n > n_0) \]

and

\[\limsup_{N \to +\infty} \sum_{k=1}^{N} (R_3(2k) - R_3(2k + 1)) < +\infty. \]

Indeed, they proved this by showing that the set

\[\mathcal{A} = \mathbb{N} \setminus \{17, 64, \ldots, 4^{2k} + 1, 4^{2k+1}, \ldots\} \]

satisfies (5) and (6)

In [6], Tang and Chen generalised Theorem D and gave a quantitative form of it. As a corollary, we have

Theorem F. If \(\mathcal{A} \subset \mathbb{N} \) is an infinite set such that

\[\limsup_{n \to +\infty} \frac{n - A(n)}{\log n} = +\infty, \]

then we have

\[\limsup_{N \to +\infty} \sum_{k=1}^{N} (R_3(2k) - R_3(2k + 1)) = +\infty. \]

(9) implies that \(R_3(2k) > R_3(2k + 1) \) infinitely often, thus it follows from Theorem F that:

Theorem G. If \(\mathcal{A} \subset \mathbb{N} \) is an infinite set such that (8) holds, then the function \(R_3(n) \) cannot be eventually increasing, that is, there is no \(n_0 \in \mathbb{N} \) with

\[R_3(n + 1) \geq R_3(n) \quad \text{for } n \geq n_0. \]

Theorem G with (8) replaced by (3) has also been proved simultaneously and independently by Balasubramanian [2]. However, the following problem has not been solved yet (see [5, Problem 4]).
PROBLEM 1. Does there exist an infinite set $\mathcal{A} \subset \mathbb{N}$ such that $\mathbb{N} \setminus \mathcal{A}$ is infinite and $R_3(n)$ is eventually increasing?

By Theorem E, the set \mathcal{A} in (7) seems to be a good candidate for being a set possessing the properties described in Problem 1, thus one might like to study the monotonicity of $R_3(\mathcal{A}, n)$ for this set \mathcal{A}. But for this set and $l \geq 2$, we have

$$R_3(\mathcal{A}, 4^{2l+4^{2l-2}} + 2) = R_3(\mathcal{A}, 4^{2l+4^{2l-2}} + 3) + 1.$$

So the function $R_3(\mathcal{A}, n)$ cannot be eventually increasing.

Although Theorem F is near the best possible by Theorem E, this is not so with Theorem G which is the consequence of Theorem F, and perhaps Theorem G could be improved upon. It is even possible that the answer to the question in Problem 1 is negative; that is, $R_3(n)$ can be increasing from a certain point on only in the trivial way.

In this paper our goal is twofold. First we shall show that Theorem C can be corrected by slightly modifying it. The statement of Theorem C is true if we replace condition (iii) by

(iii)$'$ \hspace{1em} $b, b' \in \mathcal{B}$ implies that $(b + b') \notin \mathcal{B}$.

Indeed, we shall prove slightly more:

Theorem 1. Let $\mathcal{B} \subset \mathbb{N}$ be an infinite set all whose elements are even, and write $\mathcal{A} = \mathbb{N} \setminus \mathcal{B}$. Then $R_2(n) = R_2(\mathcal{A}, n)$ is eventually increasing, that is, there exists an integer n_0 with

$$R_2(n+1) \geq R_2(n) \quad \text{for} \ n \geq n_0,$$

if and only if

(i) \hspace{1em} $R_3(\mathcal{B}, n) \leq 1$ for $n \geq n_0$ and

(ii) \hspace{1em} $b, b' \in \mathcal{B}, b + b' \geq n_0$ imply that $(b + b') \notin \mathcal{B}$.

We remark that it can be shown easily by the greedy algorithm that there is an infinite set $\mathcal{B} \subset \{2, 4, 6, \ldots\}$ such that it satisfies (i) and (ii) in Theorem 1 and we have

$$B(n) = |\mathcal{B} \cap [0, n]| \gg n^{1/3}$$

(and by using a result of Ajtai, Komlós and Szemerédi [1], with a little work this lower bound could be improved to $\gg (n \log n)^{1/3}$). Then the complement $\mathcal{A} = \mathbb{N} \setminus \mathcal{B}$ of \mathcal{B} satisfies

$$A(n) = |\mathcal{A} \cap [0, n]| = n - B(n) < n - cn^{1/3} \quad \text{(for large } n).$$

Thus by Theorem 1 it follows:

Corollary 1. There is an infinite set $\mathcal{A} \subset \mathbb{N}$ and $c > 0, n_0, n_1$ such that

$$A(n) < n - cn^{1/3} \quad \text{for } n \geq n_0$$
and $R_2(\mathcal{A}, n)$ is monotonically increasing for $n \geq n_1$.

We remark that there is a big gap between the lower and upper bounds given for $A(n)$ in (1) and (11). Unfortunately, we have not been able to tighten this gap and, in particular, we have not been able to answer the following question.

Problem 2. Is it true that if $\mathcal{A} \subseteq \mathbb{N}$ is an infinite set such that $R_2(n)$ is monotonically increasing from a certain point on, then we must have

$$\limsup_{n \to +\infty} \frac{A(n)}{n} = 1$$

or, perhaps, even

$$\lim_{n \to +\infty} \frac{A(n)}{n} = 1?$$

In the second half of this paper we shall prove a further partial result on $R_3(n)$ which seems to indicate that, perhaps, the answer to the question in **Problem 1** is negative, that is, $R_3(n)$ can be monotonically increasing only in the trivial way. We show if \mathcal{A} is infinite and $R_3(n)$ is eventually increasing, then writing $\mathcal{B} = \{b_1 < b_2 < \cdots\} = \mathbb{N}\setminus\mathcal{A}$, by **Theorem G** there is a $C(= C(B)) > 1$ so that

$$b_n > C^n$$

for all large n. Now we shall show that if the elements of \mathcal{B} grow quickly, then again $R_3(n)$ cannot be eventually increasing:

Theorem 2. Assume that $\mathcal{B} = \{b_1 < b_2 < \cdots\} \subseteq \mathbb{N}$ is an infinite sequence and define \mathcal{A} by $\mathcal{A} = \mathbb{N}\setminus\mathcal{B}$. If

$$(12) \quad \lim_{n \to +\infty} (b_{n+1} - b_n) = +\infty,$$

then the function $R_3(n) = R_3(\mathcal{A}, n)$ is not eventually increasing; that is, there is no n_0 with

$$(13) \quad R_3(n + 1) \geq R_3(n) \quad \text{for } n \geq n_0.$$

We could prove other similar sufficient criteria. For example, we can prove that if all sufficiently large $b \in \mathcal{B}$ have the same parity, then $R_3(n)$ is not eventually increasing. However, we have not been able to settle **Problem 1**.

The results above reflect a striking and quite unexpected contrast between the monotonicity properties of the three representation functions: while $R_1(n)$ can be monotonically increasing only in the trivial way, by **Theorem 1** there are many sets \mathcal{A} satisfying (11) so that $R_2(n)$ is monotonically increasing. Finally, $R_3(n)$ is closer to $R_1(n)$, than to $R_2(n)$: either it is monotonically increasing only in the trivial way or if there is a non-trivial \mathcal{A} with this property then it must be such that it can be obtained from \mathbb{N} by dropping only $< c \log n$ integers up to n (for infinitely many n).
2. Proof of Theorem 1

Write

\[B(n) = \left| \{ b : b \leq n, b \in \mathcal{B} \} \right|, \]
\[\eta(i) = \begin{cases} 1 & \text{if } i \in \mathcal{B} \\ 0 & \text{if } i \notin \mathcal{B} \end{cases} \]

and

\[\overline{R}(n) = R_3(\mathcal{B}, n) = \left| \{ (b, b') : b, b' \in \mathcal{B}, b \leq b', b + b' = n \} \right|. \]

Then

\[R_2(n) = \left| \{(a, a') : a, a' \in \mathcal{A}, a < a', a + a' = n \} \right| = \sum_{1 \leq i < n/2} (1 - \eta(i))(1 - \eta(n-i)) = \sum_{1 \leq i < n/2} 1 - \left| \{ i : 1 \leq i \leq n-1, i \in \mathcal{B} \} \right| + \left| \{ (b, b') : b, b' \in \mathcal{B}, b \leq b', b + b' = n \} \right| = \sum_{1 \leq i < n/2} 1 - B(n-1) + \overline{R}(n). \]

Since the elements of \(\mathcal{B} \) are even, thus it follows that

\[R_2(2k) = (k - 1) - B(2k - 2) + \overline{R}(2k) \]

and

\[R_2(2k + 1) = k - B(2k) \]

then

\[R_2(2k + 1) - R_2(2k) = 1 - (B(2k) - B(2k - 2)) - \overline{R}(2k) = 1 - \eta(2k) - \overline{R}(2k) \]

(14)

and

\[R_2(2k) - R_2(2k - 1) = \overline{R}(2k). \]

The latter is always non-negative, thus (10) holds if and only if (14) is non-negative for \(2k \geq n_0 \):

\[1 - \eta(2k) - \overline{R}(2k) \geq 0 \quad \text{(for } 2k \geq n_0). \]

Assume first that (10) holds. Since \(\eta(k) \geq 0 \), it follows from (15) that

\[\overline{R}(2k) = R_3(\mathcal{B}, 2k) \leq 1 \quad \text{for } 2k \geq n_0. \]

(16)
The elements of \(\mathcal{B} \) are even, thus

\begin{equation}
R_3(\mathcal{B}, 2k + 1) = 0 \quad \text{for all } k \in \mathbb{N}.
\end{equation}

(i) in the theorem follows from (16) and (17). Moreover, if \(b, b' \in \mathcal{B} \) and \(b + b' \geq n_0 \), then writing \(b + b' = 2k \), we have \(R_3(\mathcal{B}, 2k) = \overline{R}(2k) \geq 1 \), thus it follows from (15) that \(\eta(2k) = \eta(b + b') = 0 \) so that \(b + b' \notin \mathcal{B} \) which proves (ii) in the theorem.

Assume now that (i) and (ii) in the theorem hold. If \(2k \geq n_0 \), then by (i) we have \(\overline{R}(2k) = R_3(\mathcal{B}, 2k) \leq 1 \) so that \(\overline{R}(2k) = 0 \) or \(1 \). If \(\overline{R}(2k) = 0 \), then by (i) \(\eta(2k) = 0 \) which proves (ii) in the theorem.

3. Proof of Theorem 2

We shall use proof by contradiction: assume that \(\mathcal{B} \subset \mathbb{N} \) satisfies (12), however, (13) holds for some \(n_0 \).

Define \(B(n), \eta(i) \) and \(\overline{R}(n) = R_3(\mathcal{B}, n) \) as in the proof of Theorem 1. Then we have

\[
R_3(n) = \sum_{1 \leq i \leq n/2} (1 - \eta(i)) (1 - \eta(n - i)) \\
= \sum_{1 \leq i \leq n/2} 1 - B(n - 1) - \eta(n/2) + \overline{R}(n)
\]

(here we have \(\eta(n/2) = 0 \) if \(n \) is odd). It follows that

\[
R_3(2k) = k - B(2k - 1) - \eta(k) + \overline{R}(2k)
\]

and

\[
R_3(2k + 1) = k - B(2k) + \overline{R}(2k + 1)
\]

then

\[
R_3(2k + 1) - R_3(2k) = -\left(B(2k) - B(2k - 1)\right) + \eta(k) + \left(\overline{R}(2k + 1) - \overline{R}(2k)\right)
\]

(18)

Clearly we have \(R_3(\mathcal{B}, 2k + 1) = R_2(\mathcal{B}, 2k + 1) \), and \(R_3(\mathcal{B}, 2k) - \eta(k) = R_2(\mathcal{B}, 2k) \) (if \(k \in \mathcal{B} \), then \(b = k, b' = k \) is a solution of \(b + b' = 2k \), \(b, b' \in \mathcal{B} \) \(b \leq b' \)) thus (18) can be rewritten as

\[
R_3(2k + 1) - R_3(2k) = -\eta(2k) + \left(R_2(\mathcal{B}, 2k + 1) - R_2(\mathcal{B}, 2k)\right)
\]

(19)

\[
\leq R_2(\mathcal{B}, 2k + 1) - R_2(\mathcal{B}, 2k).
\]

[7] Monotonicity properties 135
It follows from (13) and (19) that

\[0 \leq -\eta(2k) + \left(R_2(\mathcal{B}, 2k + 1) - R_2(\mathcal{B}, 2k) \right) \leq R_2(\mathcal{B}, 2k + 1) - R_2(\mathcal{B}, 2k) \text{ for } k \geq n_0/2. \]

(20)

Write \(\mathcal{B}_0 = \{ b : b \in \mathcal{B}, b + 1 \notin \mathcal{B}, 2 \mid b \} \), \(\mathcal{B}_1 = \{ b : b \in \mathcal{B}, b + 1 \notin \mathcal{B}, 2 \nmid b \} \). For a set \(\mathcal{S} \), define \(S(m, n) = \{ b : m \leq b \leq n, b \in \mathcal{S} \} \) and \(S(n) = S(1, n) \). By (12) we have at least one of \(\mathcal{B}_0 \) and \(\mathcal{B}_1 \) is an infinite set. Write

\[
M = \begin{cases}
\max_{b \in \mathcal{B}_0} b & \text{if } |\mathcal{B}_0| < \infty \\
\max_{b \in \mathcal{B}_1} b & \text{if } |\mathcal{B}_1| < \infty \\
1 & \text{others.}
\end{cases}
\]

By Theorem G, there exists a constant \(C = C(\mathcal{A}) \) such that

\[B(n) \leq C \log n \]

for infinitely many positive integers \(n \). By the bipartite method, there are infinitely many positive integers \(n \) with

\[|B(n, 2n)| \leq 2C. \]

For such an integer \(n \), let \(b_u \) be the least \(b \in \mathcal{B} \) with \(b \geq 2n \). Then

\[|B(\frac{1}{2} b_u, b_u)| \leq 2C + 1. \]

(21)

for large \(n \). Thus, there are infinitely many \(b_u \in \mathcal{B} \) with (21). Let \(b_u \) be such one with \(b_u > M + n_0 \) and \(b_{u+1} - b_u > 1 \), and let \(i = 0 \) or \(1 \) with \(b_u \in \mathcal{B}_i \). Let

\[v = v(u) = \min_{m \geq B(b_u - b_{u-1})} \{ b_m - b_{m-1} \} - 2 \]

and

\[\mathcal{B}_i(v) = \{ \bar{b}_1 < \bar{b}_2 < \cdots < \bar{b}_x \}. \]

By the definition of \(M \) and (12), we have \(|\mathcal{B}_i(v)| \to \infty \) as \(u \to \infty \). So \(x > 2C + 1 \) for large \(u \). Since \(u = B(b_u) \geq B(b_u - b_{u-1}) \), we have

\[\bar{b}_j \leq v < b_u - b_{u-1} \leq b_u . \]

So

\[R_2(\mathcal{B}, b_u + \bar{b}_j) \geq 1 \quad \text{for } j = 1, 2, \ldots, x. \]

Noting that \(b_u, \bar{b}_j \in \mathcal{B}_i \), we have \(2 \mid b_u + \bar{b}_j \). By \(b_u + \bar{b}_j \geq b_u > n_0 \) and (20), we have

\[R_2(\mathcal{B}, b_u + \bar{b}_j + 1) \geq 1 \quad \text{for } j = 1, 2, \ldots, x. \]
Let
\begin{equation}
 b_u + b_j + 1 = b_s_j + b_t_j, \quad b_s_j < b_t_j, \quad j = 1, 2, \ldots, x. \tag{22}
\end{equation}

Then
\[b_{t_j} > \frac{1}{2} (b_{s_j} + b_{t_j}) = \frac{1}{2} (b_u + b_j + 1) > \frac{1}{2} b_u \]
and
\[b_{t_j} < b_u + b_j + 1 \leq b_u + v + 1 < b_u + b_{u+1} - b_u = b_{u+1}. \]

So
\[b_{t_j} \in B\left(\frac{1}{2} b_u, b_u\right). \]

By (21), and \(x > 2C + 1 \), there exist \(1 \leq p < q \leq x \) with \(t_p = t_q \). Hence, by (22), we have
\[0 < b_{s_q} - b_{s_p} = \overline{b}_q - \overline{b}_p \leq v. \]

So
\begin{equation}
 b_{s_{p+1}} - b_{s_p} \leq v. \tag{23}
\end{equation}

If \(b_{t_p} = b_u \), then \(b_{s_p} = \overline{b}_p + 1 \), a contradiction with \(\overline{b}_p \in B_t \). Thus, \(b_{t_p} < b_u \) and
\[b_{s_p} = b_u + \overline{b}_p + 1 - b_{t_p} > b_u - b_{u-1}, \]
then \(s_p \geq B(b_u - b_{u-1}) \), a contradiction with (23) and the definition of \(v \). This completes the proof of Theorem 2.

\section*{References}

\begin{itemize}
\end{itemize}