Abstract
A class of mixed control-state constrained optimal control problems for elliptic partial differential equations arising, for example, in Lavrentiev-type regularized state constrained optimal control is considered. Its numerical solution is obtained via a primal-dual active-set method, which is equivalent to a class of semi-smooth Newton methods. The locally superlinear convergence of the active-set method in function space is established, and its mesh independence is proved. The paper contains a report on numerical test runs including a comparison with a short-step path-following interior-point method and a coarse-to-fine mesh sweep, that is, a nested iteration technique, for accelerating the overall solution process. Finally, convergence and regularity properties of the regularized problems with respect to a vanishing Lavrentiev parameter are considered.
Download the article in PDF format (size 1.2 Mb)
References
-
R. A. Adams, Sobolev spaces (Academic Press, New York-London, 1975).
MR450957
-
E. L. Allgower, K. Böhmer, F. A. Potra and W. C. Rheinboldt, “A mesh-independence principle for operator equations and their discretizations”, SIAM J. Numer. Anal. 23 (1986) 160–169.
MR821912
-
W. Alt, Discretization and mesh-independence of Newton's method for generalized equations, Volume 195 of Lecture Notes in Pure and Appl. Math. (Dekker, New York, 1998) 1–30.
MR1472263
-
N. Arada, E. Casas and F. Tröltzsch, “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comput. Optim. Appl 23 (2002) 201–229.
MR1937089
-
R. E. Bank, P. E. Gill and R. F. Marcia, Interior methods for a class of elliptic variational inequalities, Volume 30 of Lect. Notes Comput. Sci. Eng. (Springer, Berlin, 2003) 218–235.
MR2038939
-
M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, “A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim. 11 (2000) 495–521.
MR1787272
-
M. Bergounioux and K. Kunisch, “Primal-dual strategy for state-constrained optimal control problems”, Comput. Optim. Appl. 22 (2002) 193–224.
MR1911062
-
M. Bergounioux and K. Kunisch, “On the structure of Lagrange multipliers for state-constrained optimal control problems”, Systems Control Lett. 48 (2003) 169–176.
MR2020634
-
E. Casas, “Control of an elliptic problem with pointwise state constraints”, SIAM J. Control Optim. 24 (1986) 1309–1318.
MR861100
-
X. Chen, Z. Nashed and L. Qi, “Smoothing methods and semismooth methods for nondifferentiable operator equations”, SIAM J. Numer. Anal. (electronic) 38 (2000) 1200–1216.
MR1786137
-
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Volume 224 of Grundlehren der mathematischen Wissenschaften (Springer Verlag, Berlin, 1977).
MR473443
-
M. Hintermüller, K. Ito and K. Kunisch, “The primal-dual active set strategy as a semismooth Newton method”, SIAM J. Optim. 13 (2003) 865–888.
MR1972219
-
M. Hintermüller and K. Kunisch, “Feasible and non-interior path-following in constrained minimization with low multiplier regularity”, SIAM J. Control Optim. 45 (2006) 1198–1221.
MR2257219
-
M. Hintermüller and M. Ulbrich, “A mesh-independence result for semismooth Newton methods”, Math. Program. 101 (2004) 151–184.
MR2085262
-
B. Kummer, “Generalized Newton and NCP methods: convergence, regularity, actions”, Discuss. Math. Differ. Incl. 20 (2000) 209–244.
MR1815097
-
D. G. Luenberger, Optimization by vector space methods (John Wiley & Sons Inc., New York, 1969).
MR238472
-
C. Meyer, U. Prüfert and F. Tröltzsch, “On two numerical methods for state-constrained elliptic control problems”, Technical Report 5-2005, Department of Mathematics, TU Berlin, 2005.
-
R. Mifflin, “Semismooth and semiconvex functions in constrained optimization”, SIAM J. Control Optimization 15 (1977) 959–972.
MR461556
-
U. Prüfert, F. Tröltzsch and M. Weiser, “The convergence of an interior point method for an elliptic control problem with mixed control-state constraints”, Technical report, TU Berlin, 2004, Preprint 36-2004.
-
L. Qi and J. Sun, “A nonsmooth version of Newton's method”, Math. Programming 58 (3, Ser. A) (1993) 353–367.
MR1216791
-
S. M. Robinson, “Generalized equations and their solutions. I. Basic theory. Point-to-set maps and mathematical programming”, Math. Programming Stud. 10 (1979) 128–141.
MR527064
-
S. M. Robinson, “Strongly regular generalized equations”, Math. Oper. Res. 5 (1980) 43–62.
MR561153
-
S. M. Robinson, “Generalized equations and their solutions. II. Applications to nonlinear programming. Optimality and stability in mathematical programming.”, Math. Programming Stud. 19 (1982) 200–221.
MR669732
-
F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen (Vieweg, Wiesbaden, Germany, 2005).
-
S. J. Wright, Primal-dual Interior-Point Methods (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997).
MR1422257
|