ANZIAM J. 49 (2007), no. 1, pp. 99–109.

Calculating the near field of a line of sources using Mellin transforms

P. A. Martin
Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden
Colorado 80401-1887
USA
pmartin@mines.edu.
Received 29 August 2006; revised 13 July 2007

Abstract

In slender-body theories, one often has to find asymptotic approximations for certain integrals, representing distributions of sources along a line segment. Here, such approximations are obtained by a systematic method that uses Mellin transforms. Results are given near the line (using cylindrical polar coordinates) and near the ends of the line segment (using spherical polar coordinates).

Download the article in PDF format (size 124 Kb)

2000 Mathematics Subject Classification: primary 41A60; 44A15; secondary 31B10
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2378152 Z'blatt-MATH: 1132.41343

References

  1. M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions (Dover, New York, 1965).
  2. N. Bleistein and R. A. Handelsman, Asymptotic expansions of integrals (Holt, Rinehart and Winston, New York, 1975).
  3. E. Chadwick, “A slender-body theory in Oseen flow”, Proc. Roy. Soc. A 458 (2002) 2007–2016. MR1921950
  4. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions vol. I (McGraw-Hill, New York, 1953).
  5. G. Fikioris, “Integral evaluation using the Mellin transform and generalized hypergeometric functions: Tutorial and applications to antenna problems”, IEEE Trans. Antennas & Propagation 54 (2006) 3895–3907. MR2283795
  6. S. Goldstein, Lectures on fluid mechanics (Interscience, London, 1960). MR118130
  7. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, London, 1980).
  8. R. A. Handelsman and J. B. Keller, “Axially symmetric potential flow around a slender body”, J. Fluid Mech. 28 (1967) 131–147. MR211675
  9. R. A. Handelsman and J. B. Keller, “The electrostatic field around a slender conducting body of revolution”, SIAM J. Appl. Math. 15 (1967) 824–841.
  10. P. A. Martin, “End-point behaviour of solutions to hypersingular integral equations”, Proc. Roy. Soc. A 432 (1991) 301–320. MR1116959
  11. P. A. Martin, “Asymptotic approximations for functions defined by series, with some applications to the theory of guided waves”, IMA J. Appl. Math. 54 (1995) 139–157. MR1334457
  12. J. P. Moran, “Line source distributions and slender-body theory”, J. Fluid Mech. 17 (1963) 285–304. MR157553
  13. R. B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes integrals (Cambridge University Press, Cambridge, 2001). MR1854469
  14. A. G. Petrov, “Asymptotic expansions for axially symmetric cavities”, Euro. J. Appl. Math. 16 (2005) 319–334. MR2175029
  15. A. Sellier, “A general and formal slender-body theory in the non-lifting case”, Proc. Roy. Soc. A 453 (1997) 1733–1751. MR1469168
  16. E. O. Tuck, “Some methods for flows past blunt slender bodies”, J. Fluid Mech. 18 (1964) 619–635. MR162442
  17. E. O. Tuck, “Analytic aspects of slender body theory”, in Wave asymptotics (Manchester, 1990), (Cambridge University Press, Cambridge, 1992) 184–201. MR1174352
Australian Mathematical Publishing Association Inc.

Valid XHTML 1.0 Transitional

Feedback