Abstract
In slender-body theories, one often has to find asymptotic approximations for certain integrals, representing distributions of sources along a line segment. Here, such approximations are obtained by a systematic method that uses Mellin transforms. Results are given near the line (using cylindrical polar coordinates) and near the ends of the line segment (using spherical polar coordinates).
Download the article in PDF format (size 124 Kb)
References
-
M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions (Dover, New York, 1965).
-
N. Bleistein and R. A. Handelsman, Asymptotic expansions of integrals (Holt, Rinehart and Winston, New York, 1975).
-
E. Chadwick, “A slender-body theory in Oseen flow”, Proc. Roy. Soc. A 458 (2002) 2007–2016.
MR1921950
-
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions vol. I (McGraw-Hill, New York, 1953).
-
G. Fikioris, “Integral evaluation using the Mellin transform and generalized hypergeometric functions: Tutorial and applications to antenna problems”, IEEE Trans. Antennas & Propagation 54 (2006) 3895–3907.
MR2283795
-
S. Goldstein, Lectures on fluid mechanics (Interscience, London, 1960).
MR118130
-
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, London, 1980).
-
R. A. Handelsman and J. B. Keller, “Axially symmetric potential flow around a slender body”, J. Fluid Mech. 28 (1967) 131–147.
MR211675
-
R. A. Handelsman and J. B. Keller, “The electrostatic field around a slender conducting body of revolution”, SIAM J. Appl. Math. 15 (1967) 824–841.
-
P. A. Martin, “End-point behaviour of solutions to hypersingular integral equations”, Proc. Roy. Soc. A 432 (1991) 301–320.
MR1116959
-
P. A. Martin, “Asymptotic approximations for functions defined by series, with some applications to the theory of guided waves”, IMA J. Appl. Math. 54 (1995) 139–157.
MR1334457
-
J. P. Moran, “Line source distributions and slender-body theory”, J. Fluid Mech. 17 (1963) 285–304.
MR157553
-
R. B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes integrals (Cambridge University Press, Cambridge, 2001).
MR1854469
-
A. G. Petrov, “Asymptotic expansions for axially symmetric cavities”, Euro. J. Appl. Math. 16 (2005) 319–334.
MR2175029
-
A. Sellier, “A general and formal slender-body theory in the non-lifting case”, Proc. Roy. Soc. A 453 (1997) 1733–1751.
MR1469168
-
E. O. Tuck, “Some methods for flows past blunt slender bodies”, J. Fluid Mech. 18 (1964) 619–635.
MR162442
-
E. O. Tuck, “Analytic aspects of slender body theory”, in Wave asymptotics (Manchester, 1990), (Cambridge University Press, Cambridge, 1992) 184–201.
MR1174352
|