PhD Project - Tumour Spheroid Modelling
Auckland Bioengineering Institute

Posted on: Fri Oct 10 2014

A stipend for this project will be paid under Marsden Grant funding:

Tuition fees will be covered and the successful applicant will receive NZ$25,000 p.a.

Background

The tumour spheroid, which is grown in vitro from human tumour cells, is a very powerful cell culture model in cancer research. All tumours are initially avascular, and as the cells multiply the tumour core becomes hypoxic. Bill Wilson's team at the Auckland Cancer Society Research Centre (ACSRC) develops hypoxia- activated prodrugs (HAPs), compounds that have cytotoxic activity switched on when taken up by a hypoxic cell. Spheroids provide an important way to test these drugs, and to explore the influence of the factors that determine their effectiveness.

Agent-based spheroid model

In the agent-based approach each cell in the aggregation is simulated as a separate entity that responds to its microenvironment. A preliminary agent-based model (ABM) for tumour spheroids has been developed, simulating cell growth, division and death taking into account the diffusion and consumption of oxygen and nutrients.

Project aims

The first goal is to calibrate and validate the ABM on the basis of data from tumour spheroid growth experiments with a range of medium conditions. Once the model has been shown to be capable of reliably predicting the results of these growth experiments, it will be extended to incorporate drug effects, again validating against experiments. Since radiotherapy is ineffective against hypoxic cancer cells, we are very interested in exploring therapeutic protocols that combine radiation and HAPs, and killing by radiation will also be implemented in the model. At this point we will be able to design (and test through experiment) optimal combined treatment protocols. This project will break new ground in cancer modelling - there are currently no published studies on the 3D agent-based simulation of drug-induced killing of tumours.

Requirements

We are looking for someone with strong mathematical, computational modelling, and programming skills. Interest in and willingness to learn basic cell biology is also important - this project is highly interdisciplinary, and will involve working closely with Dr Kevin Hicks, Professor Bill Wilson and the experimental team at the

Contact

Gib Bogle
Auckland Bioengineering Institute
g.bogle@auckland.ac.nz
09-837-7186



**Mention you saw it on the AustMS website**
Feedback