Representations of truncated current Lie algebras

Benjamin J. Wilson∗

Abstract

Let \(g \) denote a Lie algebra, and let \(\hat{g} \) denote the tensor product of \(g \) with a ring of truncated polynomials. The Lie algebra \(\hat{g} \) is called a truncated current Lie algebra. The highest-weight theory of \(\hat{g} \) is investigated, and a reducibility criterion for the Verma modules is described.

Let \(g \) be a Lie algebra over a field \(k \) of characteristic zero, and fix a positive integer \(N \). The Lie algebra
\[
\hat{g} = g \otimes_k k[t]/t^{N+1}k[t],
\]
over \(k \), with the Lie bracket given by
\[
[x \otimes t^i, y \otimes t^j] = [x, y] \otimes t^{i+j}
\]
for all \(x, y \in g \) and \(i, j \geq 0 \), is called a truncated current Lie algebra, or sometimes a generalised Takiff algebra or a polynomial Lie algebra. We describe a highest-weight theory for \(\hat{g} \), and the reducibility criterion for the universal objects of this theory, the Verma modules. Representations of truncated current Lie algebras have been studied in [2], [3], [5], [6], and have applications in the theory of soliton equations [1] and in the representation theory of affine Kac–Moody Lie algebras [8].

A highest-weight theory is defined by a choice of triangular decomposition. Choose an abelian subalgebra \(\mathfrak{h} \subset g \) that acts diagonally upon \(g \) via the adjoint action, and write
\[
g = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} g^\alpha
\]
for the eigenspace decomposition, where \(\Delta \subset \mathfrak{h}^* \), and for all \(\alpha \in \Delta
\)
\[
[h, x] = \langle \alpha, h \rangle x \quad \text{for all } h \in \mathfrak{h} \text{ and } x \in g^\alpha.
\]
A triangular decomposition of \(g \) is, in essence\(^1\), a division of the eigenvalue set \(\Delta \) into two opposing halves
\[
\Delta = \Delta_+ \cup \Delta_-, \quad -\Delta_+ = \Delta_-,
\]
that are closed under addition, in the sense that the sum of two elements of Δ_+
is another element of Δ_+, if it belongs to Δ at all. The decomposition (2) defines
a decomposition of \mathfrak{g} as a direct sum of subalgebras
\[\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{h} \oplus \mathfrak{g}_- \quad \text{where} \quad \mathfrak{g}_\pm = \bigoplus_{\alpha \in \Delta_\pm} \mathfrak{g}_{\pm \alpha}. \] (3)

For example, if $\mathfrak{g} = \mathfrak{sl}(3, k)$, the Lie algebra of traceless 3×3 matrices with
entries from the field k, then the subalgebras \mathfrak{h}, \mathfrak{g}_+, \mathfrak{g}_- are the traceless diagonal,
upper-triangular and lower-triangular matrices, respectively. In analogy with the
classical case, where \mathfrak{g} is finite-dimensional and semisimple, \mathfrak{h} might be called a
diagonal subalgebra or a Cartan subalgebra, while the elements of Δ and Δ_+ might
be called roots and positive roots, respectively.

The concept of a triangular decomposition is also applicable to many infinite-
dimensional Lie algebras of importance in mathematical physics, such as Kac–
Moody Lie algebras, the Virasoro algebra and the Heisenberg algebra. For exam-
ple, the Virasoro algebra is the k-vector space \mathfrak{g} with basis the set of symbols
\[\{L_m | m \in \mathbb{Z}\} \cup \{c\}, \]
endowed with the Lie bracket given by
\[[c, a] = \{0\}, \quad [L_m, L_n] = (m - n)L_{m+n} + \delta_{m,-n}\frac{m^3 - m}{12}c, \]
for all $m, n \in \mathbb{Z}$, where δ denotes the Kronecker function. If $\mathfrak{g} = \mathfrak{a}$, then the
subalgebras
\[\mathfrak{h} = kL_0 \oplus kc, \quad \mathfrak{g}_\pm = \text{span}\{L_{\pm m}|m > 0\}, \]
provide a triangular decomposition.

The triangular decomposition (3) of \mathfrak{g} naturally defines a triangular decomposition
of $\hat{\mathfrak{g}}$,
\[\hat{\mathfrak{g}} = \hat{\mathfrak{g}}_- \oplus \hat{\mathfrak{h}} \oplus \hat{\mathfrak{g}}_+ \quad \text{where} \quad \hat{\mathfrak{g}}_\pm = \bigoplus_{\alpha \in \Delta_\pm} \hat{\mathfrak{g}}_{\pm \alpha}, \]
where the subalgebra $\hat{\mathfrak{h}}$ and the subspaces $\hat{\mathfrak{g}}^\alpha$ are defined in the manner of (1),
and $\hat{\mathfrak{h}} \subset \hat{\mathfrak{h}}$ is the diagonal subalgebra. Hence a $\hat{\mathfrak{g}}$-module M is a weight module if
the action of $\hat{\mathfrak{h}}$ on M is diagonalisable. A weight $\hat{\mathfrak{g}}$-module is of highest weight if
there exists a non-zero vector $v \in M$, and a functional $\Lambda \in \hat{\mathfrak{h}}^*$ such that
\[\hat{\mathfrak{g}}_+ \cdot v = 0; \quad \hat{U}(\hat{\mathfrak{g}}) \cdot v = M; \quad h \cdot v = \Lambda(h)v \quad \text{for all} \quad h \in \hat{\mathfrak{h}}. \]
The unique functional $\Lambda \in \hat{\mathfrak{h}}^*$ is the highest weight of the highest-weight mod-
ule M. Notice that the weight lattice of a weight module is a subset of $\hat{\mathfrak{h}}^*$, while
a highest-weight is an element of $\hat{\mathfrak{h}}^*$. A highest-weight $\Lambda \in \hat{\mathfrak{h}}^*$ may be thought of
as a tuple of functionals on \mathfrak{h},
\[\Lambda = (\Lambda_0, \Lambda_1, \ldots, \Lambda_N) \quad \text{where} \quad \langle \Lambda_i, h \rangle = \langle \Lambda, h \otimes t^i \rangle \quad \text{for all} \quad h \in \mathfrak{h} \quad \text{and} \quad i \geq 0. \] (4)

All $\hat{\mathfrak{g}}$-modules of highest weight $\Lambda \in \hat{\mathfrak{h}}^*$ are homomorphic images of a certain uni-
versal \mathfrak{g}-module of highest weight Λ, denoted by $\mathbf{M}(\Lambda)$. These universal modules
$\mathbf{M}(\Lambda)$ are known as Verma modules.

A single hypothesis suffices for the derivation of a criterion for the reducibility of a
Verma module $\mathbf{M}(\Lambda)$ for $\hat{\mathfrak{g}}$ in terms of the functional $\Lambda \in \hat{\mathfrak{h}}^*$. We assume that the
triangular decomposition of \mathfrak{g} is \textit{non-degenerately paired}, i.e. that for each $\alpha \in \Delta_+$, a non-degenerate bilinear form

$$(\cdot | \cdot)_\alpha : \mathfrak{g}^\alpha \times \mathfrak{g}^{-\alpha} \to k,$$

and a non-zero element $h_\alpha \in \mathfrak{h}$ are given, such that

$$[x, y] = (x | y)_\alpha h_\alpha,$$

for all $x \in \mathfrak{g}^\alpha$ and $y \in \mathfrak{g}^{-\alpha}$. All the examples of triangular decompositions considered above satisfy this hypothesis. The reducibility criterion is given by the following theorem, which we state without proof.

\textbf{Theorem.} [7] The Verma module $M(\Lambda)$ for $\hat{\mathfrak{g}}$ is reducible if and only if

$$\langle \Lambda, h_\alpha \otimes t^N \rangle = 0$$

for some positive root $\alpha \in \Delta_+$ of \mathfrak{g}.

Notice that the reducibility of $M(\Lambda)$ depends only upon $\Lambda_N \in \mathfrak{h}^*$, the last component of the tuple (4). The criterion described by the theorem has many disguises, depending upon the underlying Lie algebra \mathfrak{g}. If $\mathfrak{g} = \mathfrak{sl}(3, k)$, then $M(\Lambda)$ is reducible if and only if Λ_N is orthogonal to a root. This is precisely when Λ_N belongs to one of the three hyperplanes in \mathfrak{h}^* illustrated in Figure 1(a). The arrows describe the root system. If instead \mathfrak{g} is the Virasoro algebra \mathfrak{a}, then $M(\Lambda)$ is reducible if and only if

$$2m\langle \Lambda_N, L_0 \rangle + \frac{m^3 - m}{12} \langle \Lambda_N, c \rangle = 0,$$

for some non-zero integer m. That is, $M(\Lambda)$ is reducible when Λ_N belongs to the infinite union of hyperplanes indicated in Figure 1(b). The extension of a functional in the horizontal and vertical directions is determined by evaluations at c and L_0, respectively.

It is remarkable that there exists a unified reducibility criterion for the Verma modules for truncated current Lie algebras $\hat{\mathfrak{g}}$, irrespective of the particular Lie algebra.

\begin{figure}[h]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{la3.pdf}
\caption{$\mathfrak{g} = \mathfrak{sl}(3, k)$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{la2.pdf}
\caption{\mathfrak{g} the Virasoro algebra \mathfrak{a}}
\end{subfigure}
\caption{Reducibility criterion for the Verma modules of $\hat{\mathfrak{g}}$}
\end{figure}
algebra \mathfrak{g}. The technology available for deriving reducibility criteria, called the Shapovalov determinant, is easier to operate for truncated current Lie algebras. To illustrate this, we construct the Shapovalov determinant in the special case where \mathfrak{g} is finite-dimensional and semisimple. A Verma module is generated by the action of the subalgebra \mathfrak{g}_- upon the highest-weight vector. We might visualise the weight lattice of a Verma module as a cone extending downwards from the highest weight Λ. The Poincaré–Birkhoff–Witt Theorem informs us that $M(\Lambda)$ has a basis parameterised by the (unordered) downward paths in the weight lattice beginning at the highest weight; alternatively, these might be conceived of as multisets with entries from Δ^-. If we fix some weight $\Lambda - \chi$, there are only finitely many downward paths, say $\theta_1, \theta_2, \ldots, \theta_l$, extending from Λ to $\Lambda - \chi$. Dual to each downward path θ_i is the upward path θ^i from $\Lambda - \chi$ to Λ, obtained by reversing the direction of the arrows. The highest-weight space of $M(\Lambda)$ is one-dimensional, spanned by the highest-weight vector v_Λ. Hence descending from v_Λ via θ_i, and then ascending again via θ^i, results in a scalar multiple $\theta^i_j v_\Lambda$. We consider all such values together, as a matrix T^Λ_χ:

$$T^\Lambda_\chi = (\theta^i_j)_{1 \leq i,j \leq l} \quad \text{where} \quad (\theta^i_j \circ \theta_i)v_\Lambda = \theta^i_j v_\Lambda.$$

The determinant $\det T^\Lambda_\chi$ of this matrix is the **Shapovalov determinant** of $M(\Lambda)$ at χ. Degeneracy of this matrix would indicate the existence of a non-zero element of weight $\Lambda - \chi$ that vanishes along all paths to the highest-weight space; such vectors generate proper submodules. In particular, the Verma module $M(\Lambda)$ is reducible if and only if $\det T^\Lambda_\chi = 0$ for some χ.

In the case of the truncated current Lie algebras, there is a straightforward and unified approach to the derivation of a formula for the Shapovalov determinant. The nilpotency of the indeterminate t is such that many of the would-be non-zero entries of the Shapovalov matrix vanish. This permits the diagonalisation of the Shapovalov matrix by making a clever choice for the basis θ_i, and redefining the duality between the downward paths θ_i and the upward paths θ^i. The calculation of the determinant of such a matrix is only as difficult as the calculation of its diagonal entries.

References

